TOPWORX

3300 Fern Valley Road Louisville, Kentucky 40213 USA
502.969.8000 phone
502.969.5911 fax
info@topworx.com
www.topworx.com

HI
 sสাum

www.goswitch.com

The leader in reliable position sensing for the most demanding plant conditions

Table of Contents

HI SWITEH

TOPWORX
3300 Fern Valley Road
Louisville, KY 40213
02.969.8000
502.969.5911 fax
www.topworx.com

GO Switch Product Overview
8 GO Switch Quick Selection Guid
11 Fast Track Delivery List
12 Position Sensors 101
14 GO Switch Leverless Limit Switches
17 Square Leverless Limit Switches
2010 Serie
2020 Serie
2630 Serie
3280 Series
37 Round Leverless Limit Switches
4070 Series - SPDT
4870 Series - DPDT
59 Cylinder Position Sensors
64 Stroke to GO Switche
71 Specialty Solutions
72 High Temperature Leverless Limit Switches
84 Underwater Leverless Limit Switches
90 Defender Turbine Valve Monitor
93 Accessories
94 Connectors \& Cordsets
94
98
Connectors \& C
Target Magnets
98 Target Magnets
105 Switch Installation Principles
117 Applications
127 Reference Material

experience

our experience
Automotive
Biotech
Cement
Chemical
Diecasting
Food \& Beverage
Hydrocarbon
Mining
Nuclear Powe
Oil \& Gas
Petrochemica
Power
Pulp \& Paper
Steel
Tire \& Rubber
Tool \& Die
Water/Wastewater

+ expertise
our expertise
Abusive Applications
Because GO Switches have only one moving part and no metal-to-metal contact making it move, there is virtually nothing to wear out! They are built to last for high cycle, dirty, and physically abusive applications.

Corrosive Conditions

Because most GO Switches have stainless steel housings they are the logical choice for applications around salt water bleaches, or other caustic chemicals.
of mechanical limit a with the advantages of inductive proxitages and leaves their drawbacks behind

By combining the best of the two technologies, GO Switch enjoys a "double advan tage," surpassing the capabilities that either technology could achieve by itself.

As a result, GO Switches deliver reliabile, durable performance in demanding conditions that are too extreme for mechanical limit switches or inductive proximity sensors.

So if your plant processes include conditions that are extremely hot, cold, wet, dirty corrosive, abusive, or explosive, be sure to demand technology with an advantage

Explosive Environments

Because GO Switches use dry contacts, they are 'simple devices' suitable for use in Intrinsically Safe applications. And many models are rated for Zone 1 Class I Division 1 hazardous areas.

High \& Low Temperature
Because of their unique design, GO Switches can operate effectively in extremely hot (up to $400^{\circ} \mathrm{F}$) or extremely cold (down to $-40^{\circ} \mathrm{F}$) plant conditions.

Shock \& Vibration

Because GO Switches use permanent magnets that deliver outstanding snap action and contact pressure, they eliminate contact teasing' and 'contact chatter' in high vibration areas

Washdown \& Underwater

Because GO Switches are completely potted and sealed, no moisture can affect their operation. Some models are even rated for use 20,000 feet underwater!

Ordering made simple.

FAST TRAGK DEHIERY

TopWorx is committed to satisfying customer delivery requirements with speed and excellence. The products listed within the Fast Track Delivery program are standard products likely to be available for immediate shipment for normal size orders.

To Order 502.969.8000

Square Housing

General Purpose

11-12518-A2 SPDT, 9/16", Brass, Bottom Leads 81-20518-A2 DPDT, 1/4", Brass, Bottom Leads

Explosion Proof - Class I, Division 1
21-11524-A2 SPDT, 3/8", Stainless,
81-20524-A2 DPDT, 1/4", Stainless, Bottom Leads

Non-Incendive - Class I, Division 1

11-11110-00 SPDT, 3/8", Brass, Side Terminal
$\begin{array}{ll}11-12110-00 & \text { SPDT, } 9 / 16^{\prime \prime} \text {, Brass, Side Terminal }\end{array}$ 11-12510-00 \quad SPDT, $3 / 8^{\prime \prime}$, Brass, Bottom Terminal 21-11110-00 SPDT, $3 / 8$ ", Brass, Side Terminal 21-11510-00 SPDT, 3/8", Brass, Bottom Terminal 21-11516-A2 SPDT, 3/8", Brass, Bottom Leads 81-20516-A2 DPDT, 1/4", Brass, Bottom Leads

General Purpose 73-13528-A2 SPDT, 0.100", Stainless, Leads 73-13528-DCA SPDT, 0.100", Stainless, Mini 74-13528-B2 SPDT, 0.100", Stainless, Cable 74-13528-DBA SPDT, 0.100 ", Stainless, Micro 7G-23528-A2 DPDT, 0.090", Stainless, Leads 7LR-13568-A2 SPDT, 0.100", 316SS, Leads, SPDT, 0.100
Red LED
7LG-13568-A2 SPDT, 0.100", 316SS, Leads, Green LED

Explosion Proof - Class I, Division 1

 73-13523-A2 SPDT, 0.100", Stainless, Leads 73-13524-A2 SPDT, 0.100" Stainless, Leads 7G-23523-A2 DPDT, 0.090", Stainless, Leads
Non-Incendive - Class I, Division 1

 73-13526-A2 SPDT, 0.100", Stainless, Leads 7G-23526-A2 DPDT, 0.090", Stainless, Leads 7LR-1356E-A2 SPDT, 0.100 ", 316SS, Leads, Red LED7LG-1356E-A2 SPDT, 0.100", 316SS, Leads, Green LED

Cylinder Position Sensors - Stroke to GO

 7C-23658-DCA SPST, 1.025" probe, Mini Connector 7C-43658-DCA SPDT, 1.025" probe, Mini Connector 7D-23658-DCA SPST, 1.250" probe, Mini Connector 7D-43658-DCA SPDT, 1.250" probe, Mini Connector 7E-23658-DCA SPST, 2.062" probe, Mini Connector 7E-43658-DCA SPDT, 2.062" probe, Mini Connector
Position Sensors 101

The purpose of position sensors

In automated manufacturing and processing plants, position sensors help monitor and control plant processes by confirming that critical activities are completed as intended. More specifically, their primary function is to detect the presence, or absence, of a moving object, or "target".

For the purpose of this tutorial, only "mainstream" technologies that sense the presence of metal targets - limit switches, inductive proximity sensors, reed switches, and leverless limit switches - will be discussed.

Limit Switches

Limit switches are electro-mechanical devices that detect the position of a target by making direct physical contact with the target.

ADVANTAGES

The advantages of mechanical limit switches:

- Do not require power
- Can handle high current loads
- Wide operating temperature range - Immune to electrical noise - Immune to radio frequency interference

No leakage current
No voltage drops
Simple "Normally Open" or "Normally Closed" Not polarity or voltage sensitive

DISADVANTAGES

The disadvantages of mechanical limit switches:
The disadvantages of mechanical lim
Mutiple moving parts to maintain
(lever arm, push button, body, base, head, contacts, terminals)
Moving parts eventually wear and fail
Physical contact encourages premature failure via damage
Lever arm connection to internal contacts invites moisture
mand dust into contact
Poor repeatability due to wear and tear of moving parts
Physical contact causes damage to the target
Poor defense against moisture, dust, and corrosion

- Extra cost for sealed contacts and hazardous area approvals

Reed Switches

Reed Switches are electro-mechanical devices that detect the position of a magnetic target by the attraction of the target's magnetic field.

advantages

The advantages of reed switches.

- No physical contact
is required
Do not require power
Immune to electrical noise
Immune to radio frequency
interference
No leakage current
No voltage drops
Simple "Normally Open" or "Normally Closed"

DISADVANTAGES

The disadvantages of reed switches:

- Require a magnetic target to operat
- Require a magnetic target to operate
- Reed element is fragile and can break with physical contact Reed element is fragile and can break with physical contact
High vibration can cause contact chatter and false signals High vibration can cause contact chatter and false signals
Bending metal reeds causes fatigue and premature failures Contacts can be "teased" causing uncertainty of target position Limited selection of shapes, sizes, and capabilities

Inductive Proximity Sensors

Inductive proximity sensors are solid-state electronic devices that detect the position of metal targets via the disturbance of their energy field.

ADVANTAGES

The advantages of inductive proximity sensors: No physical contact is required
No moving parts to jam, wear, or break results in less maintenance
Large selection of shapes and sizes for a variety of applications
Not affected by dust or dirt

disadvantages

The disadvantages of inductive proximity sensors:
Require external power to operate
Cannot handle high current loads
Limited operating temperature range - cannot be used
in extreme heat or cold
Affected by temperature fluctuations
Affected by electrical noise
Affected by radio frequency interference
Suffer from leakage current and voltage drops
Only rpare expensiv are intrinsically safe
Polarity sensitise "pnp" models
Voltage sensitive - typically must stock both AC and DC models "Contact" sensitive - typically must stock both
"Normally Open" and "Normally Closed" models Susceptible to moisture ingression

Leverless Limit Switches

Leverless limit switches use a unique, hybrid technology to detect the position of a ferrous target via an electro-magnetic field.

ADVANTAGES

The advantages of leverless limit switches
No physical contact is required
Do not require power
Only one moving part, with no metal-to-metal contact making
it move - with nothing to jam, bend, break or wear out
Can handle high current loads
By far the widest operating temperature range
Immune to electrical noise
Immune to radio frequency interference
No leakage current
No voltage drops
Simple "Normally Open"
or "Normally Closed"
Not polarity or voltage sensitive or parallel
or paraliel
Inherently intrinsically safe
Large selection of shapes Large selection of shapes and
sizes for a variety of applications sizes or a variety of applications
Not affected by dust and dirt Not affected by moisture
Not affected by physical contact Not affected by most caustics or chemicals
Many explosion-proof options Water-proof and sub sea options Extended sensing ranges up to 4

G0 Switch Leverless Limit Switches

Abusive Applications
Because GO Switches have only one moving part and no metal-to-metal contact making it move, there is virtually nothing to wear out! They are built to last for high cycle, dirty, and physically abusive applications.

The design behind GO Switch combines the best of all worlds, bringing together the advantages of mechanical limit switches, reed switches, and inductive proximity sensors to create a unique, hybrid technology that reaches new heights of performance.
By combining the best of three technologies, GO Switch enjoys a significant advantage, surpassing the capabilities that any of the three could achieve by itself.

As a result, the unique leverless limit switch design enables GO Switches to operate effectively under conditions that are too extreme for other technologies.

So if your plant processes include conditions that are extremely hot, cold, wet, dirty, corrosive, abusive, or explosive, be sure to demand technology with an advantage. Specify GO Switch leverless limit switches.

Explosive Environments Because GO Switches use dry contacts, they are for use in Intrinsically Safe applications And many applications. And many Zone 1 Class I, Div 1 hazardous areas.
\qquad Cole

Corrosive Conditions
Because most GO Switches have stainless steel housings, they are the salt water, bleaches, or other caustic chemicals.

Washdown \& Underwater

Because GO Switches are completely potted and sealed, no moisture can affect their operation. Some models are even rated for use 20,000 feet underwater!

High \& Low Temperature Because of their unique design, GO Sin in cur can (up 400°) or extremely cold (down to - 40°) plant conditions.

Shock \& Vibration Because GO Switches use permanent magnets that deliver outstanding snap action and contact pressure, they eliminate 'contact teasing' and 'contact chatter' in high vibration areas.

G0 Switch Leverless Limit Switches

Abusive Applications
Because GO Switches have only one moving part and no metal-to-metal contact making it move, there is virtually nothing to wear out! They are built to last for high cycle, dirty, and physically abusive applications.

The design behind GO Switch combines the best of all worlds, bringing together the advantages of mechanical limit switches, reed switches, and inductive proximity sensors to create a unique, hybrid technology that reaches new heights of performance.
By combining the best of three technologies, GO Switch enjoys a significant advantage, surpassing the capabilities that any of the three could achieve by itself.

As a result, the unique leverless limit switch design enables GO Switches to operate effectively under conditions that are too extreme for other technologies.

So if your plant processes include conditions that are extremely hot, cold, wet, dirty, corrosive, abusive, or explosive, be sure to demand technology with an advantage. Specify GO Switch leverless limit switches.

Explosive Environments Because GO Switches use dry contacts, they are for use in Intrinsically Safe applications And many applications. And many Zone 1 Class I, Div 1 hazardous areas.
\qquad Cole

Corrosive Conditions
Because most GO Switches have stainless steel housings, they are the salt water, bleaches, or other caustic chemicals.

Washdown \& Underwater

Because GO Switches are completely potted and sealed, no moisture can affect their operation. Some models are even rated for use 20,000 feet underwater!

High \& Low Temperature Because of their unique design, GO Sin in cur can (up 400°) or extremely cold (down to - 40°) plant conditions.

Shock \& Vibration Because GO Switches use permanent magnets that deliver outstanding snap action and contact pressure, they eliminate 'contact teasing' and 'contact chatter' in high vibration areas.

Square Sensors

TECHNOLOGY IN ACTION 10-20 Series

LEVERLESS LIMIT SWITCH

GO Switch 10 and 20 Series side sensing switches use two permanent magnets and a ferrous armature to control a set of dry contacts.

Models 11 and 2

GO Switch Models 11 and 21 are the world's original leverless limit switches.
Their simple design, rugged enclosures, long sensing ranges, and global approvals make these switches the ideal choice wherever reliable position sensing is
needed.

Features:

SPDT 10A contacts
Side Sensing
-40° to $221^{\circ} \mathrm{F}$ operating temperature
Options:
Suitable for Zone 0, 1 , or 2 explosion proof -40° to $350^{\circ} \mathrm{F}$ high temperature
Quick disconnect connector
Contact Form

Contact Material: Silver cadmium oxide, gold flashed
Forms: SPDT, DMDB
Response Time: 8 milliseconds
Differential: Approx. $\left.5 / 5 \mathrm{~s}^{18} 8 \mathrm{~mm}\right)$
Operating Temperature: - 40° to $221^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.105^{\circ} \mathrm{C}\right)$. HiTemp $\mathrm{p}^{\text {TW option }}$ to $350^{\circ} \mathrm{F}$ ($178^{\circ 0^{\circ}}$)
(8)11 Size: $11 / 2^{11}(38 \mathrm{~mm})$ square x 49/1/6 (116 mm) overall. Add $1 / /^{\prime \prime}$
$(13 \mathrm{~mm})$ for botom conduit outtet
(21 Size: $1^{1 / 22^{\prime \prime}} 38 \mathrm{~mm}$) square X
 3 mm for bottom conduit outtet

Need Accessories
 See pp. 92-103 for:
 Range Extending Target Magnets
 Mounting Brackets Comnectors and more!

(8) $\begin{aligned} 1 & \text { Single Pole Double Throw (Form C) } \\ 3 & \text { Single Pole Doble }\end{aligned}$ 3 Single Pole Double Throw (Form C) Latching (maintained contact)
$5 \begin{gathered}\text { (Outet position must be 2, }, \text { or } 5 \text {) } \\ \text { Double Make Double Break, two }\end{gathered}$
5 Double Make Doul
6 Double Make Double Break, two circuit, Form Z Latching*
(maintained contact) (Outtetet pos (maintained contact
must be 2, 4 or 5)
*CSA certification for DMDB require potted-In
leads or cable.

$$
\underset{\text { Form C-SPDT }}{0}
$$

Ordering Guide Fill in the boxes to create your 'ordering numbe

Sensing Range

Target Material: Ferrous steel
Sensing Range: Approx. 3 3/8" (10mm) tandard; $9 / 16$ " 14 mm) extended sensing (Model 11)
Sensing Range with Target Magnet up to $33 / 4^{1 " ~(95 ~ m m) ~(m a x) ~}$
(8) $1 \begin{aligned} & \text { Standard sensing - appra } \\ & (10 \mathrm{~mm}) \text { side sensing }\end{aligned}$
(8) 2 Extended sensing - approx. $9 / 6 \mathrm{c}^{\prime \prime}$ $(14 \mathrm{~mm})$ side sensing (Contact Form must be 1 or 3) (Model 11)
7 Precision sensing - approx. $1 / 4$ $(6 \mathrm{~mm})$ side sensing (ninimal differential

(1) FAST TRABK DEIVERY

 11-11110-00 21-11110-00 CSA Class I Div 2Side Terminal Block
11-12110-00 11-12110-00
CSA Class I CSA Class I Div 2
Extended Sensing
${ }^{11-12510-00}$ 21-11510-00 CSA Class I Div 2 Iock
Botiom Terminal Block
${ }^{11-12518-A 2}{ }^{21-11516-A 2}$ ULCSA General Purpose
3 ft . leads
3 ft leads
21-11524-A2
CSA Class I
CSA Class I Div 1; 3 ft. leads

Dimensions

Extended Sensing with External Target Magnets
AMP3 Target Magnet

Contact		10 Seriss			20 Seriss	
		Stanarard	Etenemed	Precison	Standeard	Precison
spor	$\underbrace{}_{\substack{\text { Sersins } \\ \text { poffeental }}}$					
$\substack{\text { Spor } \\ \text { Latcing }}$	$\begin{aligned} & \text { Sensing } \\ & \text { Differential } \end{aligned}$		$\begin{gathered} 1-1 / 4^{\prime \prime}(32 \mathrm{~mm}) \\ \text { N/A } \end{gathered}$			$\begin{gathered} 13 / 16^{\prime \prime}(21 \mathrm{~mm}) \\ \text { N/A } \end{gathered}$
опо	Stesin		NA	${ }^{9 / 1 / 46 "(4 a m)}$		${ }^{\text {a }}$
owos Latatiry	$\pm \substack{\text { Sesing } \\ \text { Offerental }}$		NA	NA		wa

AMC5 Target Magnet

\qquad

Agency Approvals

- Temin Block

0 - Terminal Block
A - Potted PVC Leads
D - Quick Disconnect
D - Subseaw Connector
F - Potted HiTemp ${ }^{\text {m }}$ Leads
X = Approvals Available

NEMA Ratings

	Non-Hazardous				Hazardous	
NEMA CLASSES	4	4x	6	6 P	7	9
00 - Terminal Block	x					
A - Potted PVC Leads	x	ss	x	ss	Ss	ss
B - Potted SO Cable	x	ss	x	ss	ss	ss
D - Quick Disconnect	x	ss	x	ss		
D - SubSeam Connector	x	ss	x	ss		
F - Potted HiTempm Leads	x	ss	x	ss	ss	ss

SS = Stainless steel
X = Designed to meet respective NEMA specifications

Wiring Diagrams (male view)
4 Wire PVC $\&$ Hitemp Leads

NC	Red
NO	Blue
COM	Black
GND	Green

SPDT (Terminal Block)

	so Cable	
N/C	Red	
NO	White	
COM	Black	
GND	Green	
Termination B		

DMDB (Two Circuit)
Same polarity only

DMDB Form Z	PVC Leads
NC 182	Red \& Red/White Stripe
NO 112	Blue $\&$ Bluewnite Stripe

DMDB 4 Conductor SO Cable	
N0 2	Black
NC 2	White
NC 1	Red
No 1	Green
Termination B	
$\begin{aligned} & \text { DmoB Form } \mathrm{Z} \\ & \text { Mini-Change opc }-4 \text { Pin } \end{aligned}$	
Pin 1	N0 2
Pin 2	NC 2
Pin 3	NC 1
Pin 4	No 1

Mini-Change ODC - 3 Pin	
Pin 1	com
Pin 2	NC
Pin 3	no

Mini-Change ODC	-4 Pin	
Pin	CoM	
Pin 2	No	
Pin 3	NC	
Pin 4	GND	
Termination DCD		

Mini-Change OCC - 5 Pin -	
Pin 1	NC 2
Pin 2	NC 1
Pin 3	Gno
Pin 4	No 1
Pin 5	N02

Micro-Change OCC - 3 Pin	
Pin 1	com
Pin 2	NC
Pin 3	no

Subsea -3 Pin - Lock Sleeve	
Pin 1	NC
Pin 2	COM
Pin 3	NO
Termination 300	

30-80 Series

Leverless limit switch

Unoperated
The armature is positioned off-center
of the magnet, creating a dominant magnetic flux field on the sensing end of the switch which draws the arma ture down to its unoperated position, closing a contact circuit.

Shown: Model 81

GO Switch 30 and 80 Series end sensing switches use one permanent magnet and a ferrous armature to control a set of dry contacts.

With only one moving part and no metal-to-metal contact forcing it to move, there is nothing to wear out!

Models 31, 32, and 33

GO Switch Models 31,32 , and 33 offer end sensing in

 compact stainless steel enclosures.Features:
SPDT 6A contacts
End Sensing
-40° to $221^{\circ} \mathrm{F}$ operating temperature
Options:
Suitable for Zone 0 , 1 , or 2 explosion proof Quick disconnect connector

31 Size: " $^{\prime \prime}(25 \mathrm{~mm})$ square X
3/4 (81 mm) overal
 $2^{1 / 4 / 4(57 ~ m m) ~ o v e r a l l ~}$
(includes mounting brackel)
Size: $1^{1 "}(25 \mathrm{~mm})$ square
$4^{1 / 4 / 4}(108 \mathrm{~mm})$ overall

Need Accessories?
See pp. $92-103$ for:
Range Extending
Range Extending
Target Magnets
Mounting Srackets
Mounting Brackets
Comnectors and more!

Dimensions

Model 31

Model 32

Model 33

4 Stainless steel -
corrosion resistant coating (polyurethane)

- 4 CSA / FM certified explosion proof for CII, Div $1 \& 2$; Grps A,B, B,
II, Div $1 \& 2$, Grps E-G; $\mathrm{Cl} I I$. (Model 11)
6 CSA / FM certified explosion proof for CII , Div \& \& 2; Grps A,B,C,D; Cl III, Div $\& \& 2$, Grips E-G; C III. Model 31) (Wiring must be F)

7 CSA certified General Purpose CSA certified General P P
Q 8 UL listed General Purpose
A SAA: Ex s IIC T6 PG65; CII Zone 1 SAA: Ex IIC T6 P65; CII Zone 1
\& 2; EXS IIC T6 IP65; CI I Ione 0; DIP CIII Intrinsiciallys safe with entity approved barier. Instal per NEC Atricle 501.) (Model 31 and 33) (Wiring must be A)

Wiring Options

Lead Wires 18 Gauge (.110" dia.) potted-in PVC insulated AWM / TEW stranded lead wires ated at 221^{10} ($105^{\circ} \mathrm{C}$) 600 OL UL/ CSA listed
(8) A2 $36^{\prime \prime}(914 \mathrm{~mm})$
$\begin{array}{ll}\text { A3 } & 72(11429 \mathrm{~mm}) \\ \text { A4 } & 144 "(3658 \mathrm{~mm})\end{array}$
A4 Lengths greater than 144 " (Specify length in feet (e.g. A A150 $=150$ ft. of leads) Cable 18 Gauge (.250" dia.) potted-in PVC rubber covered cable rated at 1940° ($90^{\circ} \mathrm{C}$) 600 V UL / CSA listed
$\begin{array}{ll}\text { B2 } & 36^{\prime \prime}(914 \mathrm{~mm}) \\ \text { B3 } & 72^{\prime \prime}(1829 \mathrm{~mm})\end{array}$
$\begin{array}{ll}\text { B3 } & 72 "(1829 \mathrm{~mm}) \\ \text { B4 } & 144^{\prime \prime}(3658 \mathrm{~mm})\end{array}$
 Quick Disconnect Male Quick Disconnect only, potted-in connector. (CSA requires a cas Quick Disconnect Male Quick Disconnect only, potted-In connector. (CSA reauries a case
ground) (Aproval must be o o o 8) (Model 31 only and 33) Refer to pp. 92 -103 for mating cable assemblies and Aura Light Adapters.

> Mini-change ${ }^{\circ}$
> CA 3 -pin Mini-
> $\begin{array}{ll}\text { DCD } & 4 \text { - pin Mini-change type }\end{array}$

$\begin{array}{ll} & \text { Micro-change }{ }^{\ominus} \\ \text { DBA } \\ 3 \text { - pin Micro-changee }\end{array}$ ${ }_{\text {DBD }}^{\text {DBG }} \quad 4$ - pin Micro-changee typ

Temp Wire18 gaye (070 600V UL / CSA listed
$\begin{array}{ll}\text { F2 } & 36 " 1914 \mathrm{~mm}) \\ \text { F3 } & 72(1829 \mathrm{~mm})\end{array}$
F4 144 " (3658 mm)
$\mathrm{F}_{\ldots} \ldots$ Lengths greater than 144^{4} " (Specity length in feet (e.g. F F $150=150$ t. of leads)

Model 35

The GO Switch Model 35 leverless limit switch has set the standard for reliable performance in valve position monitors.

With its hermetically sealed contacts, low hysteresis, and superior resistance to vibration, moisture, contaminants, abuse, and temperature extremes, the GO Switch 35 clearly out performs any other sensor on the planet.
When ordering valve position monitors and When ordering valve position monitors and
switchboxes, be sure to specify "GO Switch inside."

Dimensions

Model 35

Model

Repeatability: . 002 " 0.05 mm

Response Time: 8 milliseconds Differential: Approx. $5 / 3_{2}$ " 4 mm) Operating Temperature: -40° to $221^{\circ} \mathrm{F}$ $\underset{\substack{\text { Operating Tem } \\\left(-40^{\circ} \text { to } \\ 05^{\circ} \mathrm{C}\right)}}{\text {. }}$

Contact Form
Contact Material: Silver cadmium Contact Materiat:
oxide, gold flashed
Forms: SPDT, Form C
Ratings: Resistive

(8) 1 Single Pole Double Throw (Form C)

Approvals
(1) (S)

7 CSA certified General Purpose (Wing must be A or B)
8 UL listed General Purpose
(8) 9 Hermetic seal; UL listed General Purpose

Wiring Options
Lead Wires 18 Gauge (:110" dia.) potted-in PVC insulated AWM / TEW stranded lead Lead Wires 18 Gauge (.110" dia.) potted-In PVC in
wires rated at $22^{\circ}{ }^{\circ}$ ($105^{\circ} \mathrm{C}$) G000 UL/ CSA listed
(1) A2 $36^{11}(914 \mathrm{~mm})$
$\begin{array}{ll}\text { A3 } & 72(1829 \mathrm{~mm}) \\ \text { A4 } & 144 "(3658 \mathrm{~m}\end{array}$

A___Lengths greater than 144^{14} (Specify length in feet (e.g. A150 $=150$ ft. of leads)) Cable 18 Gauge (.250" dia.) potted-in PVC rubber covered cable rated at $1944^{\circ} \mathrm{F}\left(90^{\circ} \mathrm{C}\right)$ 600 UL / CSA listed

B2 $\quad 36^{\prime \prime}(974 \mathrm{~mm})$
$\begin{array}{ll}\text { B3 } & 722^{(1829 \mathrm{~mm})} \\ \text { B4 } & 144^{\prime \prime}(3658 \mathrm{~mm})\end{array}$
B__ _ Lengths greater than 144 " (Specify length in feet (e.g. $\mathrm{B} 150=150 \mathrm{ft}$ of cable))

Need Accessories?
See pp. 92-103 for:
Range Extending
 Mounting Brackets
Comnectors and more!

Agency Approvals

Approvals Termination Options	(4) CSA/FM Class 1 Div 1	(6) CSA/FM Class 1 Div 2	(7) CSA General Purpose	(8) UL General Purpose	(9) Hermetic Seal Model 35	(A) SAA SAA Exs Ilc T6 IP65
A - Potted PVC Leads			X	X	x	X
B - Potted PVC Cable			X	X	X	
D - Quick Disconnect			X	x		
F - Potted HiTemp ${ }^{\text {m }}$ Leads	X	X		X		

X $=$ Approvals Available

NEMA Ratings

	Non-Hazardous				Hazardous	
NEMA CLASSES	4	4X	6	6P	7	9
A - Potted PVC Leads	X	X				
B - Potted PVC Cable	X	X				
D-Quick Disconnect	X	x	X	X		
F - Potted HiTemp ${ }^{\text {mim Leads }}$	X	X	X	X	X	X
35 Series Hermetic seal $\mathrm{w} /$ potting	X	X	X	X		

Wiring Diagrams (male view)

PVC \& Teflon Leads - UL	
NC	Red
No	Bue
com	Black

Mini-Change ODC -3 Pin	
Pin 1	COM
Pin 2	NC
Pin 3	NO
Termination DCA	(3) (2)

PVC \& Teflon Leads - CSA		
NNC	Red	
NNO	Blue	
COM	Black	
GND	Green	
Termination A \& F		

Mini-Change ODC - 4 Pin	
Pin 1	сом
Pin 2	No
Pin 3	nc
Pin 4	GND

PVC Cable - UL		
N/C	Red	
NO	White	
COM	Black	
Termination B		

Micro-Change ODC - 4 Piil	
Pin 1	com
Pin 2	No
Pin 3	nc
Pin 4	GND

PVC Cable			CSA
N/C	Red		
NO	White		
COM	Black		
GND	Green		
Termination B			

Model 81

The GO Switch Model 81 offers end sensing and an optional Double Pole Double Throw contact arrangement. With its brass or stainless steel housings and global certifications, it is a popular choice around the world.
eatures
SPDT or DPDT 10A contacts End Sensing
-40° to 221° operating temperature
Options:
Suitable for Zone 0,1 , or 2 explosion proo -40° to 350° high temperature Quick disconnect connecto Underwater capabilities

81-20516-A2 CSA Class I Div 2 DPDT Brass, 3 ft . leads

81-20518-A2
UL General Purpose DPDT Brass, 3 ft . leads

81-20524-A2
CSA Class I Div 1 DPDT Stainless, 3 ft. leads

Model

Repeatability: . 002 " $(05 \mathrm{~mm})$

Response Time: 8 milliseconds
Differential: Approx. $1 / 4 / 1(6 \mathrm{~mm})$
Operating Temperature: -40° to $221^{\circ} \mathrm{F}$ (-40 Corating to $105^{\circ} \mathrm{C}$). HiTemp P^{TM} option to

\& $81 \quad$ Size: $1^{1 / 2 / 2}(38 \mathrm{~mm})$ square X ${ }_{4}^{4 / 3 / /^{\prime \prime}(111 \mathrm{~mm}) \text { verall. Subtract }}$ $1 / 2(13 \mathrm{~mm})$ from length for side
conduit

32 Ordering Guide

Contact Form
Contact Material: Siver cadmium Contact Material:
oxide, gold flashed
Forms: DPDT, Form CC; SPDT, Form C Electrically isolated
Ratings: Resistive

1 Single Pole Double Throw (Form C)
(8) 2 Double Pole Double Throw (Form CC)

Dimensions

Model 81

Terminal Block
Terminal block only (SPOT only. Aporovals must be 1)
Lead Wires 18 Gauge (1.10" dia.) potted-in PVC insulated AWM $/$ TEW stranded lead wires rated at

$\begin{array}{ccc}\text { A2 } & 36^{\prime \prime}(194 \mathrm{~mm}) \\ \mathrm{A} 3 & 722^{\prime \prime}(1829 \mathrm{~mm}\end{array}$

A. Lengths greater than 144 " Specity length in feet e.g. A150 = 150 t.t. of eads)

Contact Form must be 1)
$\left.{ }_{36} 6^{9114 \mathrm{~mm}}\right)$

auick Disconnect Male auick Disconnect only, potted-in connector. (CSA requires a asse gounn) Apporval

$$
\begin{aligned}
& \text { Minin-change } \\
& 3 \text { - pin Mini-change }
\end{aligned}
$$

$\begin{array}{ll}\text { DCA } & \text { Mini-change } \\ 3 \text { - }{ }^{\text {- }} \text { N Mini-change } \\ \text { DGC type }\end{array}$
$\begin{array}{ll}\text { DCD } & \text { 4- pin Mini-change type } \\ \text { DCG } & 5 \text { - pin Mini-changee type }\end{array}$
SubSeam Undervater Connector Encolosure must be 2 orf
3 pin

HiTemp Wire 18 gauge (.070) dia. potted-in Teflon" in isulated leads rated at 482 F (2500") 600 V UL CSA listed
F2

Lengths greater than 144 " Speecity length in feet (e.9. F. $150=150$ t. of feads)

Agency Approvals

Approvals Termination Options	(1) No Approvals	(3) UL Class 1 Div 1	(4) CSA/FM Class 1 Div 1	(6) CSA/FM Class 1 Div 2	(7) CSA General Purpose	(8) UL General Purpose	(A) SAA Exs IIc T6 IP65
00 - Terminal Block	X						
A - Potted PVC Leads		X	X	X	X	X	X
B - Potted SO Cable		X	X	X	X	X	
D - Quick Disconnect					X	X	
D - SubSea ${ }^{\text {ma }}$ Connector					X	X	
F - Potted HiTemp ${ }^{\text {ma }}$ Leads		X	X	X	X	x	

X $=$ Approvals Available

NEMA Ratings

NEMA CLASSES	Non-Hazardous				Hazardous	
	4	4X	6	6P	7	9
00-Terminal Block	X					
A - Potted PVC Leads	X	SS	X	SS	SS	SS
B - Potted SO Cable	X	SS	X	SS	SS	SS
D - Quick Disconnect	X	SS	X	SS		
D - SubSeaiw Connector	x	SS	x	SS		
F - Potted HiTemp ${ }^{\text {m }}$ Leads	X	SS	X	SS	SS	SS

SS = Stainless steel
X $=$ Designed to meet respective NEMA specifications

Wiring Diagrams (male view)

4 Wire PVC \& HiTemp Leads	
nc	Red
no	Bue
сом	Black
GND	Green
Terminations A \& F	
So Cable	
nc	Red
No	White
com	Black
GND	Green
Termination B	

$\begin{aligned} & \text { PVC Leads, Cable \& } \\ & \text { Teflon Leads } \end{aligned}$	
N/C1- Red	NC2 - RedWhite Stripe
N01- Blue	N/02-BueWhite Stripe
COM1- Black	Com2 - BlackWhite Stripe
	- Gre
Termination A \& F	

Mini-Change ODC -7 Pin	
Pin 1	N/O2
Pin 2	COM,
Pin 3	N/C2
Pin 4	NC,
Pin 5	COM_{2}
Pin 6	No,
Pin 7	GND

Models 71 and 72

GO Switch Models 71 and 72 have the smalles diameters of any round leverless limit switch, and are used extensively in factory automation applications.

eatures:

SPDT 4A contacts
Intrinsically Safe
-40° to $221^{\circ} \mathrm{F}$ operating temperature
ptions:
Suitable for Zone 0,1 , or 2 explosion proo
-40° to $400^{\circ} \mathrm{F}$ high temperature
English or Metric threads

Model

Repeatability: . 002 " $(.05 \mathrm{~mm}$) typical
Response Time: 8 milliseconds
Differential: Approx. $0200^{\prime \prime}$ (.51 mm)
Operating Temperature: -40° to $22^{\circ} \mathrm{F}$ 40° to $105^{\circ} \mathrm{C}$) HiTemp option to $400^{\circ} \mathrm{F}$ (2040)

8 71 Model 71
 long, with 3 " " 24 UNF x $11 / 2$ " ${ }^{(388 \mathrm{~mm}}$) threads and $1 / 2{ }^{1}$ NPT conduit hub

71M Model 71
M12 $\times 1$ external metric thread

- 72 Model 72
 $(38 \mathrm{~mm})$ threads. No conduit hut 72M Model 72

M12 $\times 1$ external metric thread Fill in the boxes to create your 'ordering number.
\square

Contact Form

$\begin{array}{ll}\text { (8) } & \begin{array}{l}\text { Single Pole Double Throw } \\ \text { (Form C) }\end{array}\end{array}$
Contact Form

Sensing Range
Target Material: Ferrous steel
Sensing Range: Approx. . 040" (1 mm) end sensing
Sensing Range with Target Magnet: up to $.15^{\prime \prime}$ (4 mm)
(8) 6 Standard sensing -approx. . 040" (1 mm) end sensing

Model 71
Outlet Position
Conduit Outlet: 1/2" NPT
2 Side entry (Model 72)
Side entry (Moded 72)
(Approval must be 8) (Approval must be 8)
(Wiring must be e)
(8) Bottom of enclosure

Enclosure Material

2303 stainless steel (rated 2,000 PSI)

6316 stainless steel (rated 2,000 PSI)

Enclosure Materia

Approvals

(UL) SA: SAA

2 High temperature to $400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)$ with TeflonTM insulated leads (Wiring must be F
3 UL listed explosion proof for CII, Div $1 \& 2 ; \mathrm{Grps} A, B, C, D ; \bar{C} I I I$, Div $1 \& 2$, Gips E-G; CI III (Model 71) Wiring must be A, B, orf) (Lead seal req'd within 18")
4 CSA certified explosion proof
 seal req'd within $18{ }^{8 \prime \prime}$)
6 CSA certified CII, Div 2 ; Grps
A,B,C, D; C III, Div 2; Grps E-G; CIIII Model 71) (Wiring must be A, B, orf) Lead seal req'd within $188^{\prime \prime}$)
7 CSA certified General Purpose
8 8 UL listed General Purpose
A SAA: Exs IIC T6 P655; CII Zone 1\&
2; XXS IIC TG IP65; CI Zone O; DIP CIII Intitinsically safe with entity approved barier. Install per NEC Article 501.) WWiring must be A) (Model 71)
B SAA: High Temp EX S IIC T6 P665; CII Zone 1\& 2 ; EXS IIC T6 IP65; CII Zone o; IDP CIIIIIntinsically sate with entity apporved barier. Instal ler NEC
Atricil 501 .) (Wiring must be f) (Model 71)

Wiring Options

Lead Wires 18 Gauge (.110" diai) potted-in PVC insulated AWM / TEW stranded lead wires, ated at $2211^{19}\left(105^{\circ} \mathrm{C}\right) 600 \mathrm{~V}$ LI / CSA I isted
(f) A2 ${ }^{36}{ }^{(1914 \mathrm{~mm})}$

A3	$72\left(\begin{array}{ll}(1829 \mathrm{~mm}) \\ \text { A4 } & 144^{\prime \prime}(3658 \mathrm{~mm})\end{array}\right.$

A_-_ Lengths greater than $144^{" ~(S p e c i t y ~ l e n g t h ~ i n ~ f e e t ~}($ e.g. A $150=150$ t. of leads) Kable 18 Gauge (.250" dia.). potete-in PVC cable, rated at $176^{\circ} \mathrm{F}$ ($80^{\circ} \mathrm{C}$) 300 V, UL / CSSA listed

$\begin{array}{ll}\text { B3 } & 722^{\prime \prime}(1829 \mathrm{~mm}) \\ \text { B4 } & 1444^{\prime \prime}(3658 \mathrm{~mm})\end{array}$
${ }^{\text {B }}$ _-_ Lengths greater than 144 " (Specify length in feet (e.g. B150 $=150$ t. of cable))
Water Resistant 18 Gauge (.250" dia) PVC cable rated at $176^{\circ} \mathrm{F}$ ($\left.80^{\circ} \mathrm{C}\right) 300 \mathrm{~V}$ with watersistant squeeze connector. (Model 72) ULCSA liste
$\begin{array}{cc}\text { C2 } & \left.\begin{array}{ll}36^{\prime \prime}(914 \mathrm{~mm}) \\ \text { C3 } & 72(1829 \mathrm{~mm})\end{array}\right)\end{array}$
$\begin{array}{ll}\text { C3 } & 72^{\prime \prime}(1829 \mathrm{~mm}) \\ \text { C4 } & 144^{\prime \prime}(3658 \mathrm{~mm})\end{array}$
C__- Lengths greater than 144 " (Specity length in feet (e.g. C $150=150 \mathrm{ft}$. of cable))
Quick Disconnect Male Quick Disconnect only, potted-in connector. (CSA requires a case Hound) (Approval must be 7 or 8 Refer to 0 . $93-104$ tor mation calle assemblies and Aura Light Adapters.

DCA Mini-change ${ }^{\circ}$
$\begin{array}{ll}\text { DCA } & \text { 3pin Mni-change } \\ \text { DCD } & 4 \text { pin Mini-changee type }\end{array}$
$\begin{array}{ll}\text { DCG } & 4 \text { pin Mini-changee } \\ \text { Din Mini-changee type }\end{array}$
$\begin{array}{ll}\text { DBA } & 3 \text { pin Micro-change }{ }^{\text {type }} \\ \text { DBD } & 4 \text { pin Micro-change }{ }^{\text {type }}\end{array}$
$\begin{array}{ll}\text { DBG } & \text { P pin Micro-changee type } \\ \text { Din Micro-change }\end{array}$

600V UL/ / CSA isted Anproval must be 2 3, 4, 6, 7, 8, or B)

$\begin{array}{ll}\text { F3 } & 72(1829 \mathrm{~mm}) \\ \text { F4 }\end{array}$
$\begin{array}{ll}\text { F4 } & 1444(3658 \mathrm{~mm})\end{array}$

\square

Repeatability: .002" (.05mm) typical Response Time: 8 milliseconds Differential: Approx. $0200^{\prime \prime}(.51 \mathrm{~mm})$ Operating Temperature: -40° to $222^{\circ} \mathrm{F}$
$\left(-40^{\circ}\right.$ to $\left.105^{\circ} \mathrm{C}\right)$ HiTemp to $400^{\circ} \mathrm{F}\left(2044^{\circ} \mathrm{C}\right)$

 48 mm) threads and $1 / 22^{\text {NPT }}$ conduit hub
73M Model 73 M18 $\times 1$ external metric thread (8) 74 Model 74 5/8" $(16 \mathrm{~mm})$ dia. x $2^{3 / 4} 4^{\prime \prime}(70 \mathrm{~mm})$ Ong with $5 / 8$ "-18 UNF X 178^{17} $(48 \mathrm{~mm})$ threads. No conduit hub

74M Model 74
18×1 external metric thread

Ordering Guide Fill in the boxes to create your 'ordering number.'

Models 73 and 7

he GO Switch Model 73 is our most popular leverles limit switch. Its solid stainless steel construction and global certifications make it the ideal choice for a variety of applications. Model 74 is the same, less the conduit hub.
Features:
SPDT 4A contacts
Intrinsically Safe
-40° to $221{ }^{\circ} \mathrm{F}$ operating temperature
ptions:
Suitable for Zone 0,1 , or 2 explosion proo -40° to 400° high temperature
Quick disconnect connector
Underwater capabilities
English or Metric threads

Contact Form

\section*{| Contact Material: Palladium siver with | Target Material: Ferrous stel |
| :--- | :--- |
 sawtooth surface configuration}

Form: SPDT, Form C

(8) 1 Single Pole Double Throw (Form C)

Sensing Range: Approx.

Sensing Range: Approx.
100 " 2.5 mm) end sensing (2.000 PS $\left..072^{2(1.5 ~ m m}\right)$ end sensing $5,5,000$ PSS) $.060 "(1.5 \mathrm{~mm})$ end sensing (10,000 PS
Sensing Range with Target Magnet: up to $.35^{\prime \prime}$ (9 mm)
© 3 Standard sensing - approx. .100" $(3 \mathrm{~mm})$ end sensing (Enclosure must be 2 or 6)
4 Hipressure sensing - approx. $.072 "(2 \mathrm{~mm})$ end sensing
must be $2,7,8$, or 9)
5 Hiiressure sensing - approx, .060 " $(1.5 \mathrm{~mm})$ end sensing (Enclosure must be 4 and Approvals must be 2,7 , or 8)

Contact Form

73-13523
Class I Div $1,3 \mathrm{ft}$ lead Class I Div 1, 73-13524-A2
Class I Div $1,3 \mathrm{ft}$. lead 73-13526-A2 Class I Div 2 , 3 ft . leac ${ }^{73-13528-A 2}$ General Purpose 3 ft leads 73-13528-DCA
General Purpose General Purpose, Mini Connector 74-13522-B2
General Purpos
General Purpose, 3 ft cable 74-13528-DBA 74-13528-DBA General Purpose, Micro Connector

Outlet Position

Conduit Outlet: $1 / 2^{\prime \prime}$ NPT

2 Side entry with Teflon Side entry with Teflon
insulated leads (Model 74)
(Approval must be 2 or 8) (Wiring must be F)

8 5 Bottom of enclosure

Model 74

Dimensions

 must be 3)
3 Hipressure - 303 stainless steel (rated 5,000 PS) Sensing must be 4 (Approvava
nust be $2,7,8,0$ or 9)

4 Hipressure - 303 stainless steel (rated 10,000 PSI) (Sensing must be 5) (Approval must be $2,7,8$, or 9)
6316 stainless steel (rated 2,000 PSS)

Approvals
(UL) SA SAA
2 High temperature to $400^{\circ} \mathrm{F}\left(24^{4} \mathrm{C}\right.$) with Teflon" insulated leads (Wring must be

UL listed explosion proof for Cl1, Divi $1 \&$ Girss A, B, C, C; 1111, Div $1 \& 2$, Gips $\mathrm{E}-\mathrm{G} ;$ CIIII (Model 73) (Wiring must be A, B, or F (Leaa seal req'd within 18 ")
(8) 4 CSA certified explosion proof for Cll Div \& 2; G Grps A, $\mathrm{B}, \mathrm{CD} ; \mathrm{Cl111}, \mathrm{Div1;} 1$ Grps E-G; Cl

 (Wiring must be A, B, or F) Lead seal req'd within $188^{\prime \prime}$)
7 CSA certified General Purpose
© 8 UL listed General Purpose
9 CENELEC: EExallC T6 Zone 1. (EN 50014 \& EN 50 018, BASEEFA Certificate Ex890C1233X) (Model 73) (Wiring must be A or B)
A SAA: Ex silC T6 P1P5; Cl| Zone 1\&2; EX
 sically safe with entity approved barier.

 CII Zone 0 ; DIP CIII Inthtinsically safe with enity approved barier. Install per NEC Article 501.) (Wiring must be F)

Enclosure Material \square

Wiring Options

${ }_{\text {A4 }} \quad 1444^{4}(3658 \mathrm{~mm})$

$\begin{array}{ll}{ }^{83} & 72(1829 \mathrm{~mm}) \\ { }_{84} & 144^{\prime \prime}(3658 \mathrm{~mm})\end{array}$

Water Resistant 18 Gauge (3 cond $.250^{\prime \prime}$ dia; 4 cond. $450^{\prime \prime}$ diai) PVC cable rated at $16^{6 \%}$ ($80^{\circ} \mathrm{C}$) 300 V

$\begin{array}{ll}\text { C3 } & 72 " 1(1829 \mathrm{~mm}) \\ \text { C4 } & 144^{\prime \prime}(3658 \mathrm{~mm})\end{array}$

Quick Disconnect Male Quick Disconnect only, potted-In connector. (CSA reauires a case ground).
(Approvals must be 7 or 8) Refer to pp. 93 -109 for mating cable assemblies and Aura Light Adapeters.

```
* (8CA Mini-changee 
    SuSSa Underwater Connector (Model 73)
    4DD 4 pin, certified nod to toak underwater 
    ll
```

HiTemp Leads 18 gauge (.070" dia. potted--in Teflon"M insulated leads rated at 4822° (2500 $)$ 600V

$\begin{array}{ll}\text { F2 } & 36^{\prime \prime}(914 \mathrm{~mm}) \\ \text { F3 } & 7{ }^{(1829}(182 \mathrm{~mm}) \\ \text { F } & 144^{\prime \prime}(3558 \mathrm{~mm})\end{array}$

Models 75, 76 \& 77

Switch Models 75 and 76 are the same as models 73 and 74 , only slightly longer with more thread surface and therefore more adjustability. Model 77 is the longest and largest option in the 70 series family.

Features:
SPDT 4A contacts
Intrinsically Safe
-40° to $221^{\circ} \mathrm{F}$ operating temperatur
ptions:
Suitable for Zone 0,1 , or 2 explosion proof
-40° to $400^{\circ} \mathrm{F}$ high temperature
Quick disconnect connector
Underwater capabilities
English or Metric threads

Model

Repeatability: .002" (.05mm) typical Response Time: 8 milliseconds

Differential: Approx. 020 " (.51 mm)
Operating Temperature: -40° to $221^{\circ}{ }^{\circ}$ perating Temperature: -40 0° o 221° 75 Model 75

5/8" 16 mm) dia. $\times 45 / 1 \mathrm{E}^{\prime \prime}(110 \mathrm{~mm})$
 conduit hub
75M Model 75
M18 $\times 1$ external metric thread
(8) $76{ }^{\text {Modele }} 76$
${ }^{1 / 8^{"}(16 \mathrm{~mm}) \text { dia. } \times 3^{3 / / 6^{4}}(81 \mathrm{~mm})}$ ong with $5 / 8$ " $" 18$ UNF $\times 213 / 1 /{ }^{1 / 4}$

76M Model 76
M18 $\times 1$ external metric thread
77 Model 77
${ }^{3 / 4 / 4 "(19 ~ m m) ~ d i a . ~} \times 5^{13 / / 6 " ~}(148 \mathrm{~mm})$ long with 34^{4} "-1
$(71 \mathrm{~mm})$ threads.
Ordering Guide
Fill in the boxes to create your
'ordering number.'
Model

Contact Form

Contact Material: Palladium siver with
sawtooth surface configuration Form: SPDT, Form C
Ratings: Resistive

${ }_{\text {ac }}$		0	
wast			
120	4	${ }^{24}$	
	2	48	1.25
		125	

$\nabla 1$ Single Pole Double Throw (Form C)
Standard sensing - approx. .100"
$(3 \mathrm{~mm})$ end sensing (must te 20
Hiresur
.072 " 2 mm) end sensing (Enclosure must be 3 or 7 and Approvals must be $2,3,7$, or 8

5 Hipressure sensing - approx $.060^{\prime \prime}(1.5 \mathrm{~mm})$ end sensing (Enclosure must be 4 and Approvals must be 2,7, or 8

Sensing Range

Target Material: Ferrous steel

Sensing Range

$.100^{\prime \prime}(3 \mathrm{~mm})$ end sensing (2,000 PSS) . $072^{\prime \prime}$ (2 mm) end sensing ($5,000 \mathrm{PS}$) $.060^{\prime \prime}(1.5 \mathrm{~mm})$ end sensing ($10,000 \mathrm{PSS}$)
Sensing Range with Target Magnet Sensing Range
up to $.35^{\prime \prime}$ (9 mm)
insulated leads (Model 7 7
Approval must be 2 or 8) (Wiring must be F)
© 5 Bottom of enclosure
Outlet Position

Conduit Outlet: $1 / 2^{\prime \prime} \mathrm{N}$

路 (Approval must be 2or 8)

Model 77

Enclosure Material
(8) 203 stainless steel (rated 2,000 PSI) (Sensing must be 3)
3 Hipressure - 303 stainles steel (rated 5,000 PSI) (Sensing must be 4) (Approval must be $2,7,8$, or 9)

4 Hipressure - 303 stainless steel (rated 10,000 PSI) Sensing must be 5) (Approval must be $2,7,8$, or 9)
6316 stainless steel (rated 2,000PS)

7303 stainless steel (rated 3,500PS) (Approval mustbe 3)

Approvals

(11) (16)

2 High temperature to $400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)$ with Teflon
mustbe $)$
3 UL listed explosion proof for Cl, D $1 \& 2 ;$ Grps AB,C,C, C C III, Div $1 \& 2$, Grps $\mathrm{E}-\mathrm{G}$; $\mathrm{C} I \mathrm{II}$ ((Modele $75 \& 77$) Wining must be A, B, or \boldsymbol{F} ((lead seal req'd within 18 ")
84 CSA certified explosion proof for CII, Div 1 ; Grps A,B,C,D; CIII, Div 1; Grps E-G; C IIII (Model 75) Wiring mustbe A, B, orf Lcead sear rea'dwithin $18^{\prime \prime}$ 6 CSA certified CII, Div 2; Grps
 (Lead seal req'd within 18")
7 CSA certified General Purpos
88 UL listed General Purpose
9 CENELEC: EExdIC TG Zone 1. (Model75\&77) Wiring mustbe oor B)
ATEXZone 1EEx dIICT6

 $36^{10}(194 \mathrm{~mm})$
$72^{(1829 ~ m m)}$

Ouick Disconnect Male auick Discomenet only, potede-in connector. (CSA requires a case ground) Approvals must
be 7 or 8)

	Mini-change		Micro-change
dca	3 - pin Minichange	овA	
DCD	pin Mini-change	DBD	
dCG	changee tpe	D8G	5 - pin Micicicher
SubSea Underwater Connector (Models 75 \& 77) (Certified not to leak underwater)			
${ }^{30}$	3 pin right-angle	40E	4 pin righteng

 H2

Wiring Options

Agency Approvals

Termination Options	(2) Hi-Temp	$\begin{aligned} & \stackrel{(3)}{\text { ULI. }} \\ & \text { Civ. } 1, \end{aligned}$	(4) CSA CI. 1, Div. 1	$\begin{gathered} \text { (6) } \\ \text { CSA } \\ \text { Cl. 1, Div. } 2 \end{gathered}$	(7) CSA General Purpose	(8) UL General Purpose	9) Cenelec EExdIIC T6 Zone 1
A - Potted PVC Leads		X	X	X	X	X	X
B - Potted PVC Cable		X	X	X	X	X	X
C - Water squeeze (Models 72, 74 \& 76)					X	X	
D - Quick Disconnect					X	X	
D - SubSea ${ }^{\text {TM }}$ Connector (Models 73, 75 \& 77)					X	X	
F - HiTemp ${ }^{\text {TM }}$ Teflon Leads	X				X	X	
H - HiTemp ${ }^{\text {TM Peek Leads }}$	X				X	X	

NEMA Ratings

Models 71, 73 ,75, 77	Non-Hazardous				Hazardous	
NEMA CLASSES	4	4X	6	6P	7	9
A - Potted PVC leads	X	X	X	X	X	X
B - Potted PVC cable	X	X	X	x	X	x
C - PVC Cable w/ squeeze	x	X				
D - Quick Disconnect	x	x	x	x		
D - SubSea ${ }^{\text {TM }}$ Connector	x	x	x	x		
F - HITemp ${ }^{\text {TM }}$ Leads	x	x	x	X	X	x

X = Approvals Available

Models 72, 74, 76 NEMA CLASSES	Non-Hazardous				Hazardous	
	4	4X	6	6P	7	9
A - Potted PVC leads	X	X				
B - Potted PVC cable	x	X				
C - PVC Cable w/ squeeze	x	x				
D - Quick Disconnect	x	x	x	x		
D - SubSea ${ }^{\text {TM }}$ Connector	x	x	x	x		
F - HITemp ${ }^{\text {TM }}$ Teflon Leads	x	x				
H - HiTemp ${ }^{\text {TM }}$ Peek Leads	X	x				

Wiring Diagrams (male view)

3 Wire PVC \& Hitemp Leads

NC	Red
NO	Blue
COM	Black
Terminations A \& F	

3 Conductor PVC Cable		
NC	Red	
NO	White	
COM	Black	

4 Wire PVC \& HiTemp Leads	
NC	Red
no	Bue
com	Black
GND	Green
Terminations \& \& F	
4 Conductor PVC Cable	
nc	Red
No	White
com	Black
GND	Green

Mini-Change OCC - 5 Pin - SPDT	
Pin 1	N/0
Pin 2	nc
Pin 3	Gnd
Pin 4	Inative
Pin 5	сом

Micro-Change ODC -3 Pin	
Pin 1	COM
Pin 2	NCC
Pin 3	N/O
Termination DBA	

SubSea - 4 Pin - Lock Sleeve	
Pin 1	сом
Pin 2	No
Pin 3	NC
Pin 4	GND

Repeatability: $.002^{"}(.05 \mathrm{~mm})$ typical Response Time: 8 milliseconds

Differential: Approx. 020 " $(.51 \mathrm{~mm})$
Operating Temperature: - 40° to Operating Temperature: -40° to
2210
F-40 (8)7G Model 7 G $1 / 8^{" ~(16 ~ m m) ~ d i a . ~ X 4 " ~} 101 \mathrm{~mm}$)
 conduit hub

> 7GM Model 7 G M18 x external metric thread

7H Model 7 H

 ong with $78^{\prime \prime}-18 \mathrm{UNF} \times \mathrm{x}^{3 / 3 / 4}$
threads. No conduit outlet.

7HM Model 7H

$$
\begin{aligned}
& \text { M188x } \\
& \text { thread }
\end{aligned}
$$

71 Model 71
1" $(25 \mathrm{~mm})$ dia. $\times 55 / \mathrm{g}^{"}(148 \mathrm{~mm})$ long with 1" 1414 UNF $\times 3^{\prime \prime}$ $(76 \mathrm{~mm})$ theads
conduit outlet

Ordering Guide Fill in the boxes to create your 'ordering number.'

Contact Form

Contact Material: Palladium siver with

 sawtooth surface contiguration Form: SPDT Form C; DPDT Form CCRatings: Resistive

1 Single Pole Double Throw foum Hermetically Sealed (Moder 7) Lead seal not reauired for hazardous ocations)

Q2 Double Pole Double Throw (Form CC)
Corm C-SPDT

Sensing Range

Target Material: Ferrous steel

Sensing Range:
 Sensing Range with Target Magnet: up to $.20^{\prime \prime}$ (5 mm)
8 3 Standard sensing - approx. . 090 " (2.3 mm) end sensing

Extended Sensing Range with Extended Sensing Range w External Target Magnets

 Externai Target Magnets(see Accessories for External Target Magnets
 $\begin{array}{lll}\text { Magnet } & \text { Sensing } & \text { Differential } \\ \text { AMP3 } & .15^{\prime \prime} & .30^{\prime \prime} \\ \text { AMS4 } & .20^{\prime \prime} & .30^{\prime \prime}\end{array}$

Dimensions

Model 7G

Enclosure Material
Stainless Steel type 303
2303 stainless steel (rated 2,00 PSI)

6316 stainless steel (rated 2,000 PSI)

Need Accessories?

See pp. 93-104 for:
Range Extending
Range Extending
Traget
mangets
Mounting Backetes
Comenetors and more!

Sensing Range | Outlet Position |
| :---: |
| 3 |

Model 7H

Approvals
(UL) (SA SAA
2 High temperature to $400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)$ with TeflonTW insulated leads (Wiring must be F
Q3 UL listed explosion proof for CII, Div $1 \& 2 ;$ Grps $A, B, C, D ; C$ III, Div $1 \& 2$, Girps E-G; CIIII (Model 7 G \& 71 only seal req'd within $18^{\prime \prime}$)
4 CSA certififed explosion proof for CII, Div 1; Grps A,B,C,D; CIII, Div 1 ; Grps E -G; C IIII (Model 7 G \& 7) (Lead seal req'd within 18")

- 6 CSA certified CII, Div 2; Grp A,B,C,D; C CII, Div 2 ; Grps E-G; CI III 7) (Lead seal rea'd within

7 CSA certified General Purpose
88 UL listed General Purpose
9 CENELEC: EExdIIC T6 Zone 1 , (EN 50014 \& EN 50 018, BASEEFA Certificate Ex89C1 1233 X), (Model 7 G \& g must be A or B
A SAA: Ex s IC T6 IP65; CII Zone 1 \& 2; EX S IIC T6 IP65; CII Zone 0; DIP CIII Intrinsicially safe with entity approved barrier. Install per NEC Article 501.) (Model 7 \& \& 77) (Wiring must be A)

Lead Wires 20 Gauge (.100" dia) potted-in PVC insulated AWM / TEW stranded leaa wires, rated at $221^{\circ} \mathrm{F}\left(105^{\circ} \mathrm{C}\right) 300 \mathrm{VLL} / \mathrm{CSA}$ listed
$\begin{array}{ll}\text { A2 } & 36^{(1914 \mathrm{~mm})} \\ \text { A3 } & 72^{\prime \prime}(1829 \mathrm{~mm})\end{array}$
$\begin{array}{ll}\text { A3 } & 722^{\prime \prime}(1829 \mathrm{~mm}) \\ \text { A4 } & 144^{\prime \prime}(3658 \mathrm{~mm})\end{array}$
A__ Lengths greater than 144 " (Specify length in feet (e.g. A A150 $=150$ ft. of leads))
Cable 20 Gauge (. $215^{\text {" }}$ dia) potted-in PVC cable, rated at $176^{\circ} \mathrm{F}$ ($80^{\circ} \mathrm{C}$) 300 V , UL / CSA
B2 $36^{\prime \prime}(914 \mathrm{~mm}$)
$\begin{array}{lll}\text { B3 } & 72{ }^{(1)}(1829 \mathrm{~mm})\end{array}$
${ }^{\text {B4 }} \quad 144^{\prime \prime}(3658 \mathrm{~mm})$
Lengths greater than $144^{\prime \prime}$ (Specify length in feet (e.g. B150 $=150$ ft. of cable)
Quick Disconnect Male Quick Disconnect only, potted-in connector. (CSA requires a case ground) (Approvals must be 7 or 8) (Model 7 G and 7) Refer to pp. 93-104 for mating cable assemblies and Aura Light Adapters.

סCH $\quad \begin{aligned} & \text { Minin-change® }{ }^{\ominus} \\ & 7 \text {-pin mini-change }\end{aligned}$
HiTemp Leads 20 gauge (19 strands at. $08^{\prime \prime}$) potted-in Teflonm insulated leads rated at 20F ($250^{\circ} \mathrm{C}$) 600 V UL / CSA I isted Anproval must be 2, 3, 4, 6, , or or 8

F2
F3

$\begin{array}{ll}\text { F3 } & 72 "(1829 \mathrm{~mm}) \\ \text { F4 } & 1444^{\prime \prime}(3658 \mathrm{~mm}\end{array}$

\square

Repeatability: 002 " (.05 mm) typical

 Response Time: 8 milliseconds Differential: Approx. $0200^{\prime \prime}(.51 \mathrm{~mm})$ Operating Temperature: -40° to $160^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{Cto} 71^{\circ} \mathrm{C}\right)$.\& 7LG Model 7LG
 $159 \mathrm{~mm})$ treads and $1 / 2 / 2$ NPT conduit hub
(8) 7LR Mode 7LR

Model 7L GO Switch with LEDs

The new GO Switch Model 7L offers the same proven internals as our other 70 Series leverless limit switches, with the addition of Red or Green BriteLite LEDs. The new 7 L brings increased plant safety and awareness to the reliability of the 70 Series.
Features:
316 stainless steel enclosure
Red or Green BriteLite LEDs
Leverless Limit Switch design
HI
swIIH
niside

7LR-13568-A General Purpose
Red LEDs, 3 ft. leads

7LG-13568-A2 General Purpose, Green LED, 3 ft. leads
LLR-1356E-A2
Class I Div 2
Red LED, 3 ft . leads
7LG-1356E-A2
Class I Div 2

Dimensions

Enclosure Material
Sensing Range
Target Material: Ferrous
Sensing Range: 0.100 " nominal sawtooth surface contiguration Form: SPDT, Form C Ratings: .25A @ 24VDC/120VAC Resistive
(8 1 Single Pole Double Throw (Form C)
© 6 Standard sensing - approx 0.100 (2.5 mm) end sensing

Ordering Guide Fill in the boxes to create your Model

Lead Wires 18 Gauge (.110" dia) potted-in PVC insulated AwM / TEW stranded lead wire rated at 221^{10} ($\left.105^{\circ} \mathrm{C}\right) 600 \mathrm{~V}$ UL / CSA listed

$\begin{array}{ll}\text { A3 } & 72 "(1829 \mathrm{~mm}) \\ \text { A4 } & \left.1444^{1(3658} \mathbf{m}\right)\end{array}$
 Cable 18 Gauge (3 cond. $250^{\prime \prime}$ dia; 4 cond . 250° " dia.) potted-in PVC cable, rated at $176^{\circ} \mathrm{F}$ ($80^{\circ} \mathrm{C}$) 300V, UL / CSA listed
$\begin{array}{ll}\text { B2 } & 36^{\prime \prime}(914 \mathrm{~mm}) \\ \text { B3 }^{2} & 72 \text { " }\end{array}$
B3 $\quad 72{ }^{(1829 \mathrm{~mm})}$
$\begin{array}{lll}\text { B4 } & \text { 144" (3658 mm) } \\ \text { B } & \text { Lengths greater }\end{array}$
B. Quick Disconnect Male Quick Disconnect only, potted-in connector. (Approval must be 8) Refer to pp. 93 -104 for mating cable assemblies and Aura Light Adapters.

Model

Enclosure: $3.96^{\prime \prime} \times 1^{\prime \prime}$, 316 series stainless steel Magnetic Target: $1.05^{\prime \prime} \times 0.65$ ", 316 series stainless steel
Conduit Outtet: $1 / 2^{11}$ NPT
Operating Temperature: -40° to $160^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Environment

Zone 1 (Class I Div 1): NEMA Type 4, 4X, 7 and 9
Zone 2 (Class 1, Div 2): NEMA Type 4, 4X
(8) LPS Luminator Linear Position Senso

LPS: Linear Position Sensor

The Luminator LPS is specifically designed to rovide position feedback on linear control valves and knifegate valves. Onboard Green or Red LEDs increase safety and awareness for plant operators.
Features: 316 stainless steel enclosure Green or Red BriteLite LEDs ermetically sealed sens Snap-action contacts Without BriteLite: 1A/120VAC; 0.5A/24VDC With Britelite: $0.25 \mathrm{~A} / 20 \mathrm{VAC}$; $0.25 \mathrm{~A} / 24 \mathrm{VDC}$
w (1) Hermetically sealed SPST; Form A
Without BriteLite: 3A/120VAC; 2A/24VDC With Britelite: $0.25 \mathrm{~A} / 120 \mathrm{VAC} ; 0.25 / 24 \mathrm{VDC}$

Area Classification

-UL) $C \in$

21 Explosion Proof
Zone 1
Class I Div $1 \& 2$. Groups A.B.C.D Class II, Div $1 \& 2$, Groups E,F,G (Nisual Display option must be N)
($z 2$ Non-Incendive
None 2 Class I, Div 2, Groups A,B,C,D Class II II Div $1 \& 2$, Groups E,F,G
Class II

May be installed Intinisically Safe P
NEC A Aricle 504.

Dimensions

BriteLit: Triaxial LEDs
BriteLite Colors: Green or Red

- G Green BriteLite 360° triaxial LED visual position indicator (Z0 \& 72 only)
(8) R Red BriteLite 360° triaxial LED visual position indicator (Z0 \& z2 only)

N No visual indication

Wiring

A2 3 ft . 18 gauge potted-in lead wires
A3 6 ft . gauge potted-in lead wires
A4 12 ft. 18 gauge potted-in lead wires
DCA 3 -pin mini change quick disconnect (Z2 only unless installed I.S. per NEC A Aticle 504)

DCD 4 -pin mini change quick disconnea (Z22 only unless installed I.S. per NEC A Aricile 504)

Ordering Guide
Fill in the boxes to create your 'ordering number.

$$
\begin{aligned}
& \text { Need Accessories? } \\
& \text { See pp. 93-104 for: } \\
& \begin{array}{l}
\text { Range Extending } \\
\text { Taraet Magnets } \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Comectors and more! }
\end{aligned}
$$

Cylinder Position Sensors

TECHNOLOGY IN ACTION Stroke-to-GO

LEVERLESS LIMIT SWITCH

GO Switch Stroke-to-GO ${ }^{\circledR}$ cylinder position sensors use three permanent magnets and push-pull plunger assembly to control a set of dry contacts.

Models 7C, 7D, 7E \& 7F

With their solid stainless steel housings and leverless limit switch design, Stroke to GO switches have set the stansing

Features:
SPDT 4A contacts
Inherently Intrinsically Safe
-40° to $221^{\circ} \mathrm{F}$ operating temperature
Options:
-40° to $400^{\circ} \mathrm{F}$ high temperature Quick disconnect connector Underwater capabilities

Outlet Position

2 Side entry 360° adjustable (Wiring must be A, B, C, or F) No conduit hub
(8) 6 Side outlet 360° adjustable with Quick Disconnect (Wring must be D) (Approval must be 7)

7 Side outlet 330° adjustable with $1 / 2$ " NPT conduit hub (Wiring must be A, B, or F)
8 Top outtet (Wiring must be SubSea)

Dimensions

Lead Wires 18 Gauge (.110" dial potted-in PVC insulated AWM / TEW stranded lead wires, rated at

$\begin{array}{cc}\text { A2 } & \begin{array}{cc}36^{\prime \prime}(914 \mathrm{~mm}) \\ \text { A3 }\end{array} \\ 72(1829 \mathrm{~mm})\end{array}$

$\begin{array}{lll}{ }^{\text {B3 }} & 72(1829 \mathrm{~mm}) \\ \text { B4 } & 144^{\prime \prime}(3658 \mathrm{~mm})\end{array}$
 Water Resistant 18 Gauge (.250" dia.) PVC cable rated at $176^{\circ} \mathrm{F}$ ($\left.80^{\circ} \mathrm{C}\right) 300 \mathrm{v}$ with water-resistant

 Quick Disconnect Male Quick Disconnect only, potted-in connector. (CCA reauires a case ground)
(Approvals must be 7 or 8) Refer to pp. 93 -109 for mating cable assemblies and Aura Light Adappers.

$$
\begin{aligned}
& \text { (1) DCA } \begin{array}{l}
\text { Mini-change } \\
3 \text { - pin Mini-change }{ }^{\circ}
\end{array} \\
& \begin{array}{ll}
\text { DCA } & 3 \text { - pi Mini-change type } \\
\text { DCD } & 4 \text { - pin Mini-changee type }
\end{array} \\
& \begin{array}{l}
\text { DBA } \\
\text { DBD }
\end{array} \\
& \text { Mirro-change }{ }^{\circ} \\
& \begin{array}{ll}
\text { DCD } & 4 \text { - pin Mini-Change type } \\
\text { DCG } & 5 \text { - pin Mini-change }
\end{array} \\
& \begin{array}{l}
\text { 3- pin Micro-change type } \\
4 \text { - pin Micro-change }{ }^{\text {type }}
\end{array}
\end{aligned}
$$

SubSea Underwater Connector (Outtet position must be 8)
3 3D 3 pin, ceritied not to leak underwater
$\begin{array}{lll}\text { 4DD } & 4 \text { ini, certified not to leat undervater } \\ 3 D E \\ 3 \text { pin } \\ \text { Pinght-angle, certified not tot leak underwater }\end{array}$

HiTemp Leads 18 gauge (.070" dia. potted-in Teflon" insulated leads rated at $4822^{\circ}\left(250^{\circ} \mathrm{C}\right)$ 600v UL $/$ ${ }_{\text {F2 }} \mathrm{F}_{\mathrm{A}}$ isted Approval must be e 2,7, or

$\begin{array}{ll}\text { F3 } & 72 "(1829 \mathrm{~mm}) \\ \text { F4 } & \left.1444^{(3658 ~ m m}\right)\end{array}$

Cylinder Position Sensors

S
troke-To-GO® Switches provide precise end-of-stroke position indication on pneumatic and hydraulic cylinders. Designed to exceed automotive industry standards, the housing is machined from stainless steel bar stock to handle pressures to 3,000 PSI operating (tested to UL's $3 X$ burst requirement) while withstanding the extreme external conditions such as weld slag, coolants, cutting fluids, physical abuse and even high temperatures. Stroke-to-GO® Switches incorporate the same 70 Series GO® ${ }^{\circledR}$ Switch mechanism that has been tested to over 200 million mechanical cycles and field proven in the most rigorous applications. This unique design offers the greatest benefits in cylinder indication.

Unique Features

Mechanical life:

>200,000,000 cycles

Leakage current:

Without LEDs - none With LEDs - $<1 \mathrm{~mA}$ (SPST)

Voltage Drop:

Without LEDs - none
SPDT w/ LEDS - 1.0 volt
With LEDs - 2.8 volts (SPST)

Temperature drift: none

Application Considerations Cylinder cushion must be ferrous. - Air gap between switch sensing face and cushion should be .015 " to 040 " (outside this range please consult factory). - Largest diameter of target (cushion) should cover at least 75% of probe sensing face. - Sensing face of Stroke-To-GO® Switch must be at least .125 " from piston rod for proper switch reset. This may at times require an air gap distance greater than .040". - For cushion diameters less than . $50^{\text {" }}$, air gap should be .015 " to .025 ".

Washdown: designed to withstand 1,000 PSI washdown and NEMA
6 P with Mini-Change ${ }^{\oplus}$ type connector option
Underwater: rated to 10,000 PSI with deep sea connector option
Weld Field Immune: tested and exceeded General Motors EHS-
320 specifications. Testing Agency - Candid Logic
Radio Frequency Interference (RFI): no affect at any frequency

A two digit code is required for ordering the correct custom probe length. All Application Considerations below must be met. For any discrepancies ples
consult factory. Please follow these steps:

1. Measure dimension A from both ends of your cylinder or retrieve from specification drawings.
2. Locate the Min/Max range that dimension A falls within on the Custom Probe Length Chart.
3. Locate probe length requirement and Probe Code in the next two Columns to the right.
4. Enter the probe code into the corresponding spaces of the Stroke-To-GO ${ }^{\circ}$ Part Number.

Application Considerations

- Cyinder cushion must be ferrous.
- Air gap between switch sensing face and cushion should be . 015 " to . 040
- Largest diameter of target (cushion) should cover at least 75% of probe sensing face.
- Sensing face of Stroke-TO-GO® Switch must be at least. 125 " from piston rod for proper switch reset. This may at times require an air gap distance greater than . 040 ".
- For cushion diameters less than .50 ", a gap should be . 015 " to . 025 ".
- Mounting hardware is $1 / 4^{4}-20$ grade 8 socket head cap screw (included)
$\underset{\substack{\text { Custom } \\ \text { Probe }}}{7 F-} \underset{\substack{\text { Probe } \\ \text { Code }}}{23658-D C A}$
EXAMPLE: If "A" $=2.900$ " then:

Probe Selection Chart

		PROBE PROBE		"A" Range		PROBE PROBE LENGTH CODE					
Min	max			Mn	max			min	max		
1.015	1.040	1.000	${ }^{\text {A1 }}$	2.365	2.390	2.350	G1	3.715	3.740	3.700	N1
1.040	1.065	1.025	*	2.390	2.415	2.375	G2	3.740	3.765	3.725	N2
1.065	1.090	1.050	A3	2.415	2.440	2.400	63	3.765	3.790	3.750	N3
1.090	1.115	1.075	A4	2.440	2.465	2.425	${ }^{64}$	3.790	3.815	3.775	N4
1.115	1.140	1.100	A5	2.465	2.490	2.450	65	3.815	3.840		${ }^{1} 5$
	115	1.125	${ }^{\text {A6 }}$	2.490	251	2.475	66	3.840		,	
1.165	1.190	1.150	A7	2.515	2.540	2.500	G7	3.865	3.890	3.850	N7
1.190	1.215	1.175	A8	2.540	2.565	2.525	${ }^{68}$	3.890	3.915	3.875	N8
1.215	1.240	1.200	A9	2.565	2.590	2.550	G9	3.915	3.940	3.900	N9
1.240	1.265	1.225	${ }^{\text {B1 }}$	2.590	2.615	2.575	H1	3.940	3.965	3.925	P1
1.265	1.290	1.250	+	2.615	2.640	2.600	H2	3.965	3.990	3.950	P2
1.290	1.315	1.275	B3	2.640	2.665	2.625	н3	3.990	4.015	3.975	P3
1.315	1.340	1.300	${ }^{84}$	2.665	2.690	2.650	H4	4.015	4.040	4.000	
1.340	1.365	1.325	${ }^{\text {B5 }}$	690	2.715	2.675	н5	4.040	4.065	4.025	
1.365	1.390	1.350	${ }^{66}$	2.715	2.740	2.700	н6	4.065	4.090		
1.390	1.415	1.375	B7	2.740	2.765	2.725	H7	4.090	4.115	4.075	
1.415	1.440	1.400	B8	2.76	2.790	2.750	нв	4.115	4.140	4.100	
1.440	1.465	1.425	B9	2.790	2.815	2.775	н9	4.140	4.165	4.125	
1.465	1.490	1.450	C1	2.815	2.840	2.800	J1	4.165	4.190	4.150	${ }^{\text {R1 }}$
1.490	1.515	1.475	C2	2.840	2.865	2.825	J2	4.190	4.215	4.175	
1.515	1.540	1.500	c3	2.865	2.890	2.850	J3	4.215	4.240	4.200	
1.540	1.565	${ }_{1.525}$	C4	2.890	2.915	2.875	J4	4.240	4.265	4.225	
1.565	1.590	1.550	c5	2.915	2.940	2.900	J5	4.265	4.290	4.250	15
1.590	1.615	1.575	c6	2.940	2.965	2.295	J6	4.290	4.315	4.275	
1.615	1.640	1.600	c7	2.965	2.990	2.950	J7	4.315	4.340	4.300	
1.640	1.665	1.625	C8	2.990	3.015	2.975	J8	4.340	4.365	4.325	
1.665	1.690	1.650	c9	3.015	3.040	3.000	J9	4.365	4.390	4.350	
1.690	1.715	1.675	D1	3.040	3.065	3.025	k1	4.390	4.415	4.375	s1
1.715	1.740	1.700	D2	3.065	3.090	3.050	K2	4.415	4.440	4.400	S2
1.740	1.765	1.725	D3	3.090	3.115	3.075	k3	4.440	4.465	4.425	
1.765	1.790	1.750	D4	3.15	3.140	3.100	K4	4.465	4.490	4.450	
1.790	1.815	1.775	D5	3.140	3.165	3.125	k5	4.490	4.515	4.475	
1.815	1.840	1.800	${ }^{\text {D6 }}$	${ }^{3.165}$	3.190	${ }^{3.150}$	${ }_{\text {K6 }}$	4.515	4.540	4.500	
1.840	1.865	1.825	D7	3.190	3.215	3.175	K7	4.540	4.565	4.525	
1.865	1.890	1.850	D8	3.215	3.240	3.200		4.565	4.590		
1.890	1.915	1.875	D9	3.240	3.265	3.225	k9	4.590	4.615	4.575	
1.915	1.940	1.900	E1	3.265	3.290	3.250	L1	4.615	4.640	4.600	${ }^{\text {T1 }}$
1.940	1.965	1.925	E2	3.290	3.315	3.275	L2	4.640	4.665	4.625	
1.965	1.990	1.950	E3	3.315	3.340	3.300	L3	4.665	4.690	4.650	T3
1.990	2.015	1.975	E4	3.340	3.365	3.325	L4	4.960	4.715	4.675	析
2.2015	${ }_{2.065}^{2.040}$	${ }_{2}^{2.000}$	${ }_{\text {E6 }}^{\text {E6 }}$	3.365 3.390	${ }^{3.390}$	${ }_{3.375}^{3.350}$	$\stackrel{L 5}{16}$	4.715 4.740	4.740 4.765		${ }^{5}$
2.065	2.090	2.050	E7	3.415	3.440	${ }_{3.400}$	L7	4.765	4.790	4.750	7
2.090	2.115	2.075	E8	3.440	3.465	3.425	L8	4.790	4.815	4.775	
2.115	2.140	2.100	E9	3.465	3.490	3.450		4.815	4.840	4.800	
2.140	2.165	2.125	F1	3.490	3.515	3.475	M1	4.840	4.865	4.825	
2.165	2.190	2.150	F2	3.515	3.540	3.500	M2	4.865	4.890	4.850	
2.190	2.215	2.175	F3	3.540	3.565	3.525	M3	4.890	4.915	4.875	
2.215	2.240	2.200	F4	3.565	3.590	3.55		4.915	4.90		
2.240	2.265	2.225	f	3.590	3.615	3.575	M5	4.940	4.965	4.925	
${ }_{2}^{2.265}$	${ }_{2}^{2.290}$	2.250	${ }_{\text {F7 }}$		3.640 3.655						
2.2	2.340	,	${ }^{\text {F8 }}$	${ }_{3.665}$	${ }_{3.690}$	${ }_{3.650}^{3.65}$					
340	2.365	325	F9	3.690	3.715	3.675	M9				

Dimension A is measured from the outside surface of the cylinder block to the Top Dead Center (TDC) of the ferrous cushion. Distance A may differ at each end.

"A"		PRobeLENGTH	$\begin{aligned} & \text { PROBE } \\ & \text { COOE } \end{aligned}$
MN	max		
2.89	2.915	2.875	14

Custionsphar
(muste feeruos ste)

Agency Approvals

Approvals	(2) HiTemp	(7) CSA General Purpose	(8) UL General Purpose
Termination Options		X	X
A - Potted PVC Leads	X	X	
B - Potted PVC Cable		X	X
C - Water squeeze connector		X	X
D - Quick Disconnect		X	X
D - SubSea™ Connector		X	X
F - HiTemp ${ }^{\text {TM }}$ Leads	X		

X $=$ Approvals Available

NEMA Ratings

Models 7C, 7D, 7E, 7F NEMA CLASSES	Non-Hazardous				Hazardous	
	4	4X	6	6P	7	9
A - Potted PVC leads	X	X				
B - Potted PVC cable	x	x				
C - PVC Cable w/ squeeze	X	X	X	X		
D - Quick Disconnect	X	X	X	X		
D - SubSea ${ }^{\text {TM }}$ Connector	x	x	x	x		
F - HiTemp ${ }^{\text {TM }}$ Teflon leads	X	x				

Specialty Sensors

11 HiTemp $^{\text {TM }}$ Switch

The GO Switch Model 11 HiTemp ${ }^{T M}$ leverless limit switches are rated for continuous operation at $350^{\circ} \mathrm{F}$. With its classic design, the 11 is useful when long sensing ranges are needed, in applications such as automotive paint booths, conveyors, automated driers, and valve position monitoring on steam valves and other high heat applications.

Features:
SPDT 10A contacts
Side sensing to $3 / 8^{\prime \prime}$
Continuous operation at $350^{\circ} \mathrm{F}$
Options:
Sensing range to $3-3 / 8^{\prime \prime}$ with target magnet Mica glass lead wires rated over $842^{\circ} \mathrm{F}$

Dimensions

Model 11

Approvals
 Wiring Options

(UL) SAA
(8) 2 High temperature to 3500 F ${ }^{\left.4176^{\circ} \mathrm{C}\right)}$ with Teflon${ }^{\text {Tim }}$ insulated
SAA: High Temp 350\% ($\left.176^{\circ} \mathrm{C}\right)$ EX SIIC T6 IP65; CII Zone 18 IP CIII Intrinsicially safe with entity pproved barier. Instal per NEC Hticle 501.) (Wiring must be F)

Differential: Approx. $5 / 56$ " $(8 \mathrm{~mm})$
Dperating Temperature: -40

11 Size: $1^{11 / 2 " ~}(38 \mathrm{~mm})$ square $49 / \mathrm{m}^{4}(116 \mathrm{~mm})$ overall. Ad $11 /{ }^{\prime \prime}$
$(13 \mathrm{~mm})$ for botom conduit outtet

(8) 1 Single Pole Double Throw (Form C)

3 Single Pole Double Throw (Form C) Latching (maintained contact)
(Outtet position nust be 2, 4 or 5)

81 HiTemp $^{\text {TM }}$ Switch

The GO Switch Model 81 HiTemp ${ }^{\text {TM }}$ leverless limit switch is rated for continuous operation at $350^{\circ} \mathrm{F}$. The 81 offers end sensing and an optional Double Pole
Double Throw contact arrangement The 81 is usefu
when redundant signals are required in applications
such as automotive paint booths, conveyors, automated driers and valve position monitoring on steam valves driers, and valve position monitoring on steam valves and other high heat applications.

Features:
SPDT or DPDT 10A contacts
End sensing to $5 / 16^{\prime \prime}$
Continuous operation at $350^{\circ} \mathrm{F}$
Options:
Sensing range to $3-7 / 8^{" 1}$ with target magnet
Mica glass lead wires rated over $842^{\circ} \mathrm{F}$

Dimensions

Contact Form

Contact Material: Silver cadmium oxide, gold flashed
Forms: DPDT Form CC, SPDT Form C Ratings: Resistive

1 Single Pole Double Throw (Form C)
(8) 2 Double Pole Double Throw (Form CC)

Sensing Range

Target Material: Ferrous steel
Sensing Range: Approx. $1 / 441(6 \mathrm{~mm})$ Sensing Range with Target Magnet: up to $37 / 8^{19}(98 \mathrm{~mm})($ max $)$
(8) Approx. $1 / /^{\prime \prime}(6 \mathrm{~mm})$ end sensing

Outlet Position

Conduit Outtet Two locations

1 Side outtet
(8) 5 Bottom of enclosure

Operating Temperature: - 40° to $350^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.176^{\circ} \mathrm{C}\right)$
(8) 81 Size: $11 /{ }^{1 / 2}(38 \mathrm{~mm})$ square x
$4^{3 / / 8 "}$ " $(111$ mm) veverall. Subtract $1 / 2 " 1(13 \mathrm{~mm})$ from length for side
conduiit

Models 71 and 72

GO Switch Models 71 and 72 have the smallest diameters of any round leverless limit switch, and are diameters of any round leverless limit switch, and a

Features:
SPDT 4A contacts
Intrinsically Safe
-40° to $400^{\circ} \mathrm{F}$ operating temperature
Options:
English or Metric threads
Mica glass lead wires rated over $842^{\circ} \mathrm{F}$

Dimensions

Model

Repeatability: . 002 " (.05 mm) typical Response Time: 8 milliseconds

Differential: Approx. 020 " (.51 mm)
Operating Temperature: - 40° to $400^{\circ} \mathrm{F}$ (-400 to $\left.204^{\circ} \mathrm{C}\right)$
(8) 71 Model 71
 long, with 3 " $\mathrm{g}^{2} 24 \mathrm{UNF} \mathrm{x} 1$ 1/2" ${ }^{(38 \mathrm{mmm}}$) threads and $1 / 2 \mathrm{k}$ " 14 NP conduit hub
71M Model 71
M12 $\times 1$ external metric thread
(8) 72 Mode 72

72M Model 72
M12 1 external metric thread Fill in the boxes to create your ordering number.'

Contact Form

(8) 1 Single Pole Double Throw (Form C)

Model 71

Enclosure Material
(8) 2303 stainless steel (rated $2,000 \mathrm{PSI}$)

6316 stainless steel rated 2,000 PS

Approvals

Model 72
 $600 \mathrm{VL} /$ / CSA I isted

$\begin{array}{ll}\text { F3 } & 72^{\prime \prime}(1829 \mathrm{~mm} \\ \text { F4 } & 144 "^{1(3658} \mathrm{mm}\end{array}$

3-74-75-76-77 HiTemp ${ }^{\text {TM }}$ Switches

GO Switch Models 73,75 , and 77 HiTemp $^{T M}$ leverless mit switches are rated for continuous operation at $400^{\circ} \mathrm{F}$, the highest rating of any position sensors on the sensing is required, in applications such as cylinder sensing is required, in applications such as cyinder
position sensing in automated paint booths, driers, and position sensing in automated paint booths, driers, and valves and other high heat applications.

Features:
SPDT 4 amp contacts
End sensing to $0.100^{\prime \prime}$
Continuous operation at $400^{\circ} \mathrm{F}$
Options:
Sensing range to .35 " with target magnet Mica glass lead wires rated over $842^{\circ} \mathrm{F}$

Model

Repeatability: . 002 " (.05mm) typical
Response Time: 8 milliseconds
Differential: Approx. $0200^{\prime \prime}$ (.51 mm)
Operating Temperature: -40° to $400^{\circ} \mathrm{F}$ $\left(-40^{\circ}\right.$ to $\left.204^{\circ} \mathrm{C}\right)$
(8) 73 Model 73

 (48 mm threads and $1 / 2$ " 14 NPT conduit thub
(8) $74 \begin{array}{ll}73 \mathrm{M} & \text { Modisel.1. } 74 \\ \text { Mexternal metric thread }\end{array}$ 5/4" 16 mm) dia. $\times 2^{3 / 4} 4^{\prime \prime}(70 \mathrm{~mm})$ Cong with $5 / 48=18$ UNF x 1 $1 / 8$ $(48 \mathrm{~mm})$ threads. No conduit hub
(8) $75 \begin{aligned} & \text { T4M } \\ & \text { Model } 75\end{aligned}$
 long with $58^{\prime \prime}-18 \mathrm{UNF} \times 2^{13 / 1 / 6^{4}}$ (77 mm) threads and $1 / 2$ " NT conduit hub
(8) 76
$5_{8_{8 " ~}^{\prime \prime}}(16 \mathrm{~mm}) \mathrm{din} 33^{2}$

(71 mm) threads. No conduit hub
76M Model 76
M18 $\times 1.5$ exeemal metric thread
Ordering Guide Fill in the boxes to create your ordering numbe Mod

Contact Form

Contact Material: Palladium siver with sawtooth surface configuration Form: SPDT, Form C Ratings: Resistive

(8) 1 Single Pole Double Throw (Form C)

Sensing Range

Target Material: Ferrous steel Sensing Range: Approx Sensing Range: Approx.
$.100^{\prime \prime}(2.5 \mathrm{~mm})$ end sensing (2.000 Ps) $.072^{\prime \prime}(1.8 \mathrm{~mm})$ end sensing $5,000 \mathrm{PSI}$ $.060^{\prime \prime}(1.5 \mathrm{~mm})$ end sensing 10,000 PS Sensing Range with Target Magnet up to $.35^{\prime \prime}(9 \mathrm{~mm})$
\& 3 Standard sensing - approx. 100" $(3 \mathrm{~mm})$ end sensing (Encosure must be 2 or 6)

4 HiPressure sensing - approx. $.072{ }^{\prime \prime}(2 \mathrm{~mm})$ end sensing (Encossure must be 3)
5 Hipressure sensing - approx $.060 "(2 \mathrm{~mm})$ end sensing (Enclosure must be 4)

Dimensions

Model 73

Model 74

Model 76

Enclosure Material

Approvals

Wiring Options

 EN 50014 \& EN 50018 , BASEEFA (Wiring must be H)B SAA: High Temp 400\% ($204^{\circ} \mathrm{C}$) EX SIIC T3 P655; CII Zone $1 \& 2$; EX S IC T3 IP65; CII Zone 0 ; DIP CIII barier. Install per NEC A Aricie 501.)

HiTemp Leads 18 gauge (.070" dia. potted-in Teflon"Ti insulated leads rated at $482^{2 \%}$ $\left(250^{\circ} \mathrm{C}\right) 600 \mathrm{VUL} / \mathrm{CSA}$ listed
(8) F2 $36^{\prime \prime}(1914 \mathrm{~mm})$
$\begin{array}{ll}\text { F4 } & 1441(3658 \mathrm{~mm})\end{array}$

hiremp Leads 16 gauge potted-in Peek insulated leads with siver plated copper
conductor rated at $500^{\circ} \mathrm{F}\left(260^{\circ} \mathrm{C}\right) 600 \mathrm{~V}$; UL / CSA listed
H2 36 " 1914 mm)
$\begin{array}{ll}\text { H3 } & 722^{(1829 \mathrm{~mm})} \\ \text { H4 } & 144 "(3658 \mathrm{~mm})\end{array}$

CENELEC: EExdIC T3 Zone 1.
(EN 5000148 EN 50 O 18 BASEES

(1) SAA

High temperature to 4000 F (2044
with Teflon"
insulated leads with TeflonTi insula
(Wiring must be e)

4 CSA certified explosion proof for CII, Div $1 ;$ Girps A,B,C,D; CIII, Div 1 ; ps E-G; C IIII (Model 73) Wiring (Rated $298^{\circ}\left(148^{\circ}\right.$) (Lead eq'd within $18^{\prime \prime}$

7G-7H-7I HiTemp ${ }^{\text {TM }}$ Switches

GO Switch Models 7G, 7H, and 71 HiTemp ${ }^{\text {TM }}$ leverless limit switches are rated for continuous operation at 400° F, the highest rating of any position sensors on the market. These Throw contact arrangement They are useful when precision sensing and redundant signals are needed, in applications such as cylinder position sensing in automated paint booth such as cyinder position sensing in automated paint booths, valves and other high heat applications.

Features:

SPDT or DPDT 4A contacts
End sensing to .090"
Continuous operation at $4000^{\circ} \mathrm{F}$
Options:
Sensing range to .20 " with target magne Mica glass lead wires rated over $842^{\circ} \mathrm{F}$

Model

Repeatability: . 002 " .05 mm typical
Response Time: 8 milliseconds
Differential: Approx. 020 " .51 mm)
Operating Temperature: -40° to 221^{10} (-40° to $105^{\circ} \mathrm{C}$) (Option to $\left.400^{\circ} \mathrm{F}\right)$

- 7 GG Model 7 G
 long with $5 / \mathrm{g}^{1-18} \mathrm{UNF} \times 13 / 4^{\prime \prime}$ $(44 \mathrm{~mm})$ thead
conduit tub
7GM Model 7 G $\underset{\substack{\text { M18 } \\ \text { thread } \\ \text { and } \\ \text {. } \\ \text { external metric }}}{ }$

H Model 7 H
 long with $5 / /^{\prime \prime}-18 \mathrm{UNF} \times 13 / 4 /^{4}$
threads. No conduit outtet.
7HM Model 7 H $\underset{\substack{\text { M18 } \\ \text { thread }}}{\mathrm{M}} 1.5$ external metric
-
71

 $(76 \mathrm{~mm})$ threads
conduit outtet

Ordering Guide Fill in the boxes to create your ordering number.

1 Single Pole Double Throw (Form C) Hermetically Sealed (Model 76 \& 7) (Lead seal not required for hazardous locations)
(V) 2 Double Pole Double Throw (Form CC)

\section*{Sensing Range:}

Sensing Range
$090 "$ (2.3 mm) end sensing (2.000 PSI)
Sensing Range with Target Magnet: up to $.20^{\prime \prime}$ (5 mm)
© 3 Standard sensing - approx. . 090 Model
(2.3 mm) end sensing

Model 7G

HiTemp Leads 20 gauge (19 strands at. 08") potted-in TeflonTM insulated leads rated at $42^{\circ} \mathrm{F}\left(250^{\circ} \mathrm{C}\right) 600 \mathrm{~V}$ UL / CSA listed (Approval must be 6,7, or 8)

$\begin{array}{ll}\text { F3 } & 72 "(1829 \mathrm{~mm}) \\ \text { F4 } & 144^{\prime \prime}(3658 \mathrm{~mm})\end{array}$
F-_- Lengths greater than 144 " (Specify length in feet (e.g. F $150=150$ ft. of leads)

Outlet Position

Conduit Outte: 1/2" NPT
(8) 5 Bottom of enclosure

Model 7 H

Enclosure Material

Stainless Steel type 303
2303 stainless steel (rated 2,000 PSI)

316 stainless steel (rated 2,000 PSI)

See p. 9 - 3 -104 for:

Range Extending | Range Exenting |
| :--- |
| Tracet Magnets | Mounting Brackets

Connectors and more!
Outlet Position
5

Stroke-to-GO HiTemp ${ }^{\text {TM }}$ Switches

Stroke-to-GO Models 7C, 7D, 7E, and 7F HiTemp™ cylinder position sensors are rated for continuous operation at 400°, the highest rating of any cylinder usefitul in applications such as cylinder position sensing in automated paint booths, driers, and conveyors, and other high heat applications.

Features:
SPST or SPDT 4A contacts
Continuous operation at $400^{\circ} \mathrm{F}$
Options:
Custom probe lengths up to 5 " long Custom probe lengths up to
Mica glass lead wires rated over $842^{\circ} \mathrm{F}$
Dimensions

Enclosure Material

	Approvals	Wiring Options
$\otimes 2$	High temperature to $400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)$ with TeflonTM insulated leads	HiTemp Leads 18 gauge (. 070 " dia. potted-in Teflon ${ }^{\text {TM }}$ insulated leads rated at $482^{\circ} \mathrm{F}\left(250^{\circ} \mathrm{C}\right) 600 \mathrm{~V}$ UL / CSA listed (V) F2 $36^{\prime \prime}(914 \mathrm{~mm})$ F3 72 " $(1829 \mathrm{~mm})$ F4 $144^{\prime \prime}(3658 \mathrm{~mm})$

(8) 4 Single Pole Double Throw (Form C) (without LED) (No leakage)
$7 \begin{aligned} & \text { Single Pole Single Throw (Form A) } \\ & \text { (Noo outut wo } 1 \text { LED Didication) (No }\end{aligned}$ (No outpu
leakage)
8
Single Pole Single Throw (Form B (NNC output w/o LED indication) (No leakage)

Ordering Guide Fill in the boxes to create your ordering number. 82 \square

Contact Form
Contact Material: Palladium siver with sawtooth surface configuration Form: SPTT, Form C (with or without LED indication Single Pole, Single Throw
(with o rw without EDD indication) Form A or (with or without LED indication) Form A or

Stainless Steel type 303
(8) 5 Stainless steel (rated 3,00 PSI operating) (3 to 1 standard probe lengths

Enclosure Material
5

Model
Repeatability: . 002 " (.05 mm) Response Time: 8 milliseconds Differential: Approx. $5 / 16$ " $(8 \mathrm{~mm})$ Operating Temperature: -40 to $221{ }^{\circ} \mathrm{F}$ $\underset{\substack{\text { Operating Tem } \\\left(-40^{\circ} \text { to } 105^{5} \mathrm{C}\right) .}}{\text {. }}$
(8) 11 Size: $1^{1 / 21 / 23} \mathbf{~ m m) ~ s q u a r e ~} \mathrm{X}$ 49/1/6" (116 mm) overall. Add $1 /{ }^{\prime \prime}$ "
$(13 \mathrm{~mm})$ for bottom conduit outtet

$11 / 21$ SubSea ${ }^{\text {TM }}$ Switches

 platforms.plattorms.
Features:
SPDT 10A contacts
Side sensing to 9/16"
Permanent submersion to 434 feet
Options:

GO Switch Models 11 and 21 SubSea ${ }^{\text {TM }}$ leverless limit switches are submersible to 434 feet. With their classic design, the 11 and 21 are useful when long sensing range military hatch doors, ships and vessels, and offshore oil

Sensing range to $3-3 / 8^{\prime \prime}(86 \mathrm{~mm})$ with target magnet Straight or right angle SubSea connector

SubSea Right Angle Connecto No lock sleeve required

Top View

Wiring Options

SubSea ${ }^{\text {TW }}$ Underwater Connector Refer to pp. 93 - 104 for mating cable assemblies.
(8) 3DD 3 pin, certified not to leak underwater (includes malefemale Defrin"w Iock sleves)
4DD 4 pin, certified not to leak underwater (includes maleffemale Defrin" 1 ock sleeves)

3DE 3 pin right-angle, certified not to leak underwater
4DE 4 pin right-angle, certified not to leak underwater

85

1 SubSea ${ }^{\text {TM }}$ Switch

The GO Switch Model 81 SubSea ${ }^{\text {TM }}$ leverless limit switch is submersible to 434 feet. The 81 offers end ensing and an optional Double Pole Double Th contact arrangement. The 81 is useful when as lock and dam gates, military hatch doars shins lo kessels, and offshere il phatorms. ships and vessels, and offshore oil platform

Features:
SPDT or DPDT 10 amp contacts
End sensing to $1 / 4^{\prime \prime}$
Permanent submersion to 434 feet
Options:
Sensing range to $3-7 / 8$ " with target magnet Straight or right angle SubSea ${ }^{\text {TM }}$ connector

Model
Contact Form

Repeatability: . 002 " (.05 mm
Response Time: 8 milliseconds
Differential: Approx. $1 / 44^{4}(6 \mathrm{~mm})$
Operating Temperature: -40° to $221^{\circ} \mathrm{F}$ $\left(-40^{\circ}\right.$ to $05^{\circ} \mathrm{C}$).
(8) 81 Size: $1^{11 / 2 " ~}(38 \mathrm{~mm})$ square x $1 / 2^{\prime \prime}(13 \mathrm{~mm})$ from length for side conduit

Contact Material: Siver cadmium Contact Material:
oxide, gold flashed
Forms: DPDT Form CC, SPDT Form C
Ratings: Resistive

SubSea Right Angle Connecto No lock sleeve required

Top View
Side View

Wiring Options

SubSea ${ }^{\text {T" }}$ Underwater Connector Refer to pp . $93-104$ for mating cable assemblies.

4DD
4 pin, certififed not to teak underwater (inclucses maleferemale Delinin"
Iock steveves)
(8) 8 DD 8 pin, certified not to leak underwater (inculudes maleffemale Derini"w lock sleveves)
$\begin{array}{ll}3 \text { 3DE } & 3 \text { pin right-angle, certified not to leak underwater } \\ \text { 4DE } & 4 \text { pin right-angle, certified not to leak underwater }\end{array}$

Defender Turbine Trip Switch

In the power generation industry, reliability is a must. This is especially true when it comes to turbine control valves. But one of the more common difficulties in power plants is the intercept, and reheat stop valves. Conventional limit switche in this application are notorious for failing due to heat and physical abuse, and for falling out of tolerance and requiring readjustment.

TopWorx has solved this problem with the Defender turbine trip switch system. Made especially for turbine valves, the Defender is packed with up to 10 reliable GO Switch leverless limit switches, and is designed as a direct, drop-in replacement for existing OEM limit switches on Westinghouse or General Electric turbines.

Model
(8) 48 Defender Turbine Valve Monitoring System
Heavy Duty 11 Gauge Steel $12^{\prime \prime} \times 10^{\prime \prime} \times 5$ " - ANS 61 Light Gray

Ordering Guide
Fill in the boxes to create your
'ordering number.'
40

GO Switches

Model 74-LLS: SPDT, environmentally sealed, rated 4 A @ $120 \mathrm{VVAC}, 3 \mathrm{~A}$ @ 24VDC, maximum 240 VAC or 240VDC, with prewired HiTemp ${ }^{\text {TM }}$ T Teflon lead
wires

Choose number of switches (minimum 1, maximum 10)
010000 One Leverless Limit Switch 020000 Two Leverless Limit Switches 020000 Two Leverless Limit Switches
030000 Three Leverless Limit Switches 040000 Four Leverless Limit Switches 050000 Five Leverless Limit Switches 060000 Six Leverless Limit Switches $\nabla 070000$ Seven Leverless Limit Switches 080000 Eight Leverless Limit Switches 090000 Nine Leverless Limit Switches
100000 Ten Leverless Limit Swithes

Wiring Options
$\checkmark 00$ Male/Female Mil Spec Quick Disconnect with back shell connection to 1-1/4" flex conduit
Merex
02 Male/Female Mil Spec Quick Disconnect with 25 ft . of cable
D3 Male/900 Female Mil Spee Quick Disconnect with hack shell connection to 1-1/4" flex conduit
04 Male/900 ${ }^{\circ}$ Female Mil Spec Quick Disconnect with 25 ft of cable
05 Male/900 Female Mil Spec Quick Disconnect with 50 ft. of cable
06 Male/45 5° Female Mil Spec Quick Disconnect with back shell connection to 1-1/4" flex conduit
07 Male/450 ${ }^{\circ}$ Female Mil Spec Quick Disconnect with 25 ft . of cable

12 Male/Female Mil Spec Quick Disconnect with 75 ft . of cable
13 Male/900 Female Mil Spec Quick Disconnect with 100 tt. of cable
16 Male/900 Female Mil spec Quick Disconnect with 50 ft. of tiTemp ${ }^{\text {mic cable }}$

Dimensions

Accessories

Quality-engineered connectors and cordsets make installation and maintenance a snap.
Standard designs are shown, with custom connectors available on special order.
Refer to the Wiring Options portion of each GO Switch Ordering Guide for detailed information.

Overall length of connector is $2.85{ }^{\prime \prime}$
$(72 \mathrm{~mm}) \times .65 "(17 \mathrm{~mm})$.
Available on $10,20,70$, and 80 Series G0
Switches

New!

 TopWorx offers connection heads from Minco Products, Inc. suitable for use wit any GO Switch. There are three base models available. A 4, 4X rated aumminum wit epoxy coating, a 316 stainess steel version, and an aluminum with epoxy coating certified EEx d IIc Zone 1 .These units are being offered as an accessory to our GO Switch product line, but may also be certified as an assembly under a special quote number

Consult factory for details.

Mini-Change ${ }^{\text {® }}$ Cordsets	
A-ECA	3 - Pin, 3 ft. (914 mm)
A-ECA-90	3 - Pin, $3 \mathrm{ft} .90^{\circ}(914 \mathrm{~mm})$
A-ECB	3 - Pin, 6 ft. (1829 mm)
A-ECB-90	3 - Pin, 6 ft. $90{ }^{\circ}$ (1829 mm)
A-ECC	3 - Pin, 12 ft. (3658 mm)
A-ECC-90	3 - Pin, 12 ft. $90{ }^{\circ}$ (3658 mm)
A-ECU	3 - Pin, 20 ft. (6096 mm)
A-ECV	3 - Pin, 30 ft. (9144 mm)
A-ECD	4 - Pin, $3 \mathrm{ft}$. (914 mm)
A-ECE	4 - Pin, 6 ft. (1829 mm)
A-ECF	4 - Pin, 12 ft. (3658 mm)
A-ECW	4 - Pin, 20 ft. (6096 mm)
A-ECX	4 - Pin, $30 \mathrm{ft}$. (9144 mm)
A-ECG	5 - Pin, 3 ft. (914 mm)
A-ECT	5 - Pin, 6 ft. (1829 mm)
A-ECL	5 - Pin, 12 ft. (3658 mm)
A-ECY	5 - Pin, 20 ft. (6096 mm)
A-ECZ	5 - Pin, $30 \mathrm{ft}$. (9144 mm)
A-ECH	7 - Pin, 3 ft. (914 mm)
A-ECJ	7 - Pin, 6 ft. (1829 mm)
A-ECK	7 - Pin, 12 ft. (3658 mm)
A-EFA	7 - Pin, 20 ft. (6096mm)

SubSea ${ }^{\text {TM }}$ Underwater Cordsets

(Specify length of cable (ft.) required.) (e.g. $3 E D 20=3$ pin and 20 ft . of cable)

Micro-Change ${ }^{\circledR}$ Cordsets

Aura ${ }^{\text {TM }}$ Light Adapter

The Aura Light Adapter provides LED position confirmation on any N/0 GO Switch using a 3, 4, or 5 pin Mini-Change connector.

Target Magnets
Increase the Sensing Range of GO Switches

AMP3 Magnet/Resin Cover
AMC3 magnet in plastic molded
$(22 \mathrm{~mm}) 2^{29 / 66^{\prime \prime}(65 ~ m m) \times 17 / 2^{11}}$
$(13 \mathrm{~mm})$ thick with $7 / 3 z^{\prime \prime}(6 \mathrm{~mm})$ holes.
For all GO Switches

AMS4 Magnet/Stainless Cover

AMC4 magnet molded into stainless steel cover
with mounting holes. $11 / 4^{\prime \prime}(32 \mathrm{~mm}) \times 17 / \mathrm{t}^{6 \prime}(37$
$(5 \mathrm{~mm})$ holes.
For all GO Switches

AMC5 Magnet/

Stainless Cover
AMC1 magnet molded into stainless cover
with mounting holes. $1 / 7 \mathrm{~s}$ " 22 mm) x
$29 / \mathrm{mb}^{\prime \prime}(65 \mathrm{~mm}) \times \mathrm{T} / \mathrm{se}^{\prime \prime}(13 \mathrm{~mm})$ thic
with $7 / 3 z^{2}$ " $(6 \mathrm{~mm})$ holes.
For all square Go Switches

AMS7 Magnet/Stainless

NUTS \& OCK PROVIDED
Magnet assembly. 2 " $(50 \mathrm{~mm}) \times$
$12^{n}(13 m m)^{\prime} / 16-20$ unc threads.
For 70 Series GO Switches

AMF6 Magnet

(Machinable)
Flexible sensing amplifierextereral magnet. $3^{\prime \prime}(76 \mathrm{~mm})$
$\times 12^{\prime \prime}(305 \mathrm{~mm}) \times 3{ }^{3} 8^{\prime \prime}(10 \mathrm{~mm})$ thick.
For all square GO Switches

Refer to individual GO Switch models for extended sensing target magnets.

Standard mounting brackets are available to cover most GO Switch installations. They are designed to provide secure installation without interfering with the operation of the switch.

	Part Number \& Description
ABS2	$3^{\prime \prime}(76 \mathrm{~mm}) \times 31 / 4^{\prime \prime}(82 \mathrm{~mm}) \times 1 / 8^{\prime \prime}(3 \mathrm{~mm})$ thick stainless steel
ABS3	$6^{\prime \prime}(152 \mathrm{~mm}) \times 1-1 / 2^{\prime \prime}(38 \mathrm{~mm}) \times 3 / 16^{\prime \prime}(5 \mathrm{~mm})$ stainess steel
ABb4	$3^{\prime \prime}(76 \mathrm{~mm}) \times 1-1 / 2^{\prime \prime}(38 \mathrm{~mm}) \times 1 / 8^{\prime \prime}(3 \mathrm{~mm})$ thick brass
ABS5	$3^{\prime \prime}(76 \mathrm{~mm}) \times 1-1 / 2^{\prime \prime}(38 \mathrm{~mm}) \times 1 / 8^{\prime \prime}(3 \mathrm{~mm})$ thick stainless steel
ABS6	10 gauge (.134") type 304 stainless steel
ABS7	1" (25mm) wide x .050" thick stainless steel for Model 31, 32, \& 33 GO Switches
ABS11	$3 / 4^{\prime \prime}(19 \mathrm{~mm}) \times 3 / 4^{\prime \prime}(19 \mathrm{~mm}) \times .030^{\prime \prime}$ thick stainless steel for Model 35 GO Switches
ABS9	1-1/4" (32mm) wide. 11 gauge (.120") thick non-magnetic stainless steel

Item	Part Number \& Description	
Cover Plates Cover plate for 10 and 20 Series GO Switches. Bottom mount cover plate/conduit for 10 and 20 Series GO Switches. Furnished with gasket and screws	AHB1 AHS2 AHB3	Brass; 1-1/2" (38mm) x 1-1/2" (38mm) x 1/8" (3mm) Stainless steel; 1-1/2" (38mm) x 1-1/2" (38mm) x 1/8" (3mm) Brass; 1-1/2" (38mm) x 1-1/2" (38mm) x 1/8" (3mm)
Jam Nuts Nickel plated brass jam nuts for 70 Series GO Switches	AHS7 AHS8 AHS18 AHS9 AHS16	(2) $3 / 8^{\prime \prime}$ nickel plated brass for Model 71 and 72 GO Switches (2) $5 / 8^{\prime \prime}$ nickel plated brass for Model $73-76,7 \mathrm{G}$ and 7 H GO Switches (2) $5 / 8^{\prime \prime}$ stainless steel for Model $73-76,7 \mathrm{G}$ and 7 H GO Switches (2) $3 / 4$ " stainless steel for Model 77 GO Switches (2) 1 " nickel plated brass for Model 7I GO Switches
Parker Seal Nut and Washer ThredSeal Kits for 70 Series GO Switches. Zinc plated steel with nitrile rubber (standard) or Viton (hi-temp or hydraulic fluids detergent) washer	AHS13 AHS14 AHS19 AHS15 AHS20 AHS17	3/8" zinc plated steel for Model 71 and 72 GO Switches $5 / 8^{\prime \prime}$ zinc plated steel for Model $73-76,7 \mathrm{G}$ \& 7 H GO Switches 5/8" Viton for Model 73-76, 7G \& 7H GO Switches 3/4" zinc plated steel for Model 77 GO Switches 3/4" Viton for Model 77 GO Switches 1" zinc plated steel for Model 71 GO Switches
Sealant Tape Grafoil sealant tape for 70 Series GO Switches. Forms a leak-tight temperaturestable joint. Recommended for high pressure and/or high temperature	AHF16	. 005 " $\times 24$ "
		101

Over the years, customers have asked us to mount our GO Switch leverless limit switches to just about every type and brand of valve and actuator on the planet.
As a result, TopWorx has amassed over 1,200 different mounting kit designs.
So whether your valve application is rotary or linear, NAMUR or non-NAMUR, in production or obsolete, TopWorx is sure to have a mounting kit that fits your need.

NAMUR Mounting Kits

The vast majority of rack and pinion valve actuators come with an ISO/NAMUR mounting pattern. This worldwide standard provides a consistent bolt pattern and shaft height regardless of the actuator brand. As a result, there is less need for expensive, custom made mounting kits, making it
TopWorx offers several cast aluminum and stainless steel
TopWorx offers several cast aluminum and stainless steel
mounting kits that make it easy to attach GO Switch 70 mounting kits that make it easy to attach GO
Series switches to rack and pinion actuators.

Custom (Non-NAMUR) Mounting Kits

Rotary valve actuators that do not use the ISO/NAMUR standeard, such as scotch-yoke or vane actuators, requed
This can be a complex procedure that should not be over-
This can be a complex procedure that should not be over-
looked by the end user. Since thereare no standards. it is
more difificult to ensure the proper fit and function of brackets, and consequently the automated valve system itself.
TopWorx has a team of designers experienced at solving TopWorx has a team of designers experienced at solving
this problem, making it easy to mount GO Switch products this problem, making it easy to mount Go switch products
to scotch-yoke and vane actuators. With an existing library of over 1,200 different designs, there is probably already a design ready for your application.
Note: TopWorx custom mounting kits are always made of heary-gauge stainless steel, ensuring the proper amount of support in the field.

Linear Valve Mounting Kits

Linear valves, such as control valves, globe valves, knifegate valves, or diaphragm valves, do not conform to any standard
mounting patterns. Therefore, custom designed mounting mounting patterns. Therefore, custom designed mounting kits are necessary to attach GO Switches.
Since TopWorx has been mounting GO Switch
leveress limit switches onto linear valves and everless limit switches onto inear valves and already a design ready for your rapplication - if not, we will create one.

Installation

Installation Principle -

Square Switches

- Non-ferrous brackets/plates are aluminum).
- GO Switches may be mounted on ferrous materials but it is not recommended. Loss of sensing range will result.
- It is recommended to mount switches 1 "to $1-1 / 2$ " away from surrounding ferrous materials when possible.
- If mounting on ferrous material, insure uniform coverage of the switch, biasing the internal magnet(s) equally. (Fig. 2) If magnets are biased unequal, atching may occur. (Fig. 1)
- GO Switches sense ferrous materials such as mild steel, 400 series and $17 / 4$ stainless steel.
- Avoid contact between target and switch. Configure mounting of switch and/or target so that target passes within proximity range of passes within proximity range of sensing area. Sensing range will ary according to model number
dize (mass) of target
- Target magnets, available through TopWorx, will increase the sensing range of the switch. Reference sensing ranges in Corresponding sections throughout the catalog.
- For optimum performance, provide sufficient mass of target, and choose the appropriate GO Switch model to match the application requirements for operating frequency, type of load, etc.
- The greater mass of target the better for maximum contact pressure, especially in low current applications.
- For heavy or inductive loads, arc suppression devices, or interposing relays are recommended for contact longevity. Contact factory for specifics.
- GO Switches may be mounted in any plane.
- When mounting GO Switches side by side, place 2-1/4" apart edge to edge, not center to center.
- Contact factory for side by side mounting.

See individual switch agrams and information on external target magnets for increased sensing ranges.

- Attach conduit or cable correctly When using long runs of supports close to the switch to avoid pulling switch out of position.
- If switch is mounted on a moving part, be sure flexible conduit is long enough to allow for movement, and positioned to eliminate binding or pulling.
- For installation in hazardous locations, check local electrical codes. Switches must be installed according to local electrical codes.
- In damp environments, use 1/4" thick non-conductive RTV or a similar moisture barrier to prevent water/condensation from entering conduit hub conduit or cable, place to


```
Figure 1
Incorrect Correct
```


Attachment of Conduit or Cable

Satisfy these 3 criteria to reduce

 possible premature failures
Sealing switches

In figure 1 something common has
occurred; the conduit system has filled with water. Over a period of time this may cause the switch to fail prematurely.
n figure 2 , the termination of the switch has been filled with $1 / 4$ " thick nonconductive RTV to prevent water intrusion and to prevent premature switch failure. A drip loop with provision for water to escape has also been installed.

Target size

In figure 3 , the ferrous target is too small to be detected reliably.

In figure 4, the target has sufficient size and mass for long term, reliable operation.

Target location

In figure 5, the target has been positioned to stop on the outside edge of the sensing to stope. This is a marginal condition for long term reliable operation.

In figure 6, the target has been positioned to stop well within the sensing range which will assure long term reliable operation.

Figure 1

Incorrec

Figure 3

Figure 5

Correct

Correc

Figure 4

Figure 6

Contact arrangements vary according to type of switch. Refer to sections on each switch series for detailed information. Be sure that electrical load will not exceed rated capacity of the switch. For two-circuit switches (DMDB), contacts must be connected same polarity only in order to minimize possibility of a line-to-line short.

ATTENTION!

and the the contact switches, meaning that they have no voitage drop when closed, nor do they have any leakage current when open. For multi-unit installation, switches may be wired in series or parallel, as shown below

Bottom view Two circuit (DMDB)
Same polarity only

Series and Parallel Wiring

Series Wiring

Any number of GO® Switches may be wired in series, without voltage drop. By contrast, conventional solid state switches have about two volts drop across the switch when operated. With a system of 12 volts and four switches in series, 8 volts is dropped across the switches and only 4 V is left to operate the load. When using $\mathrm{GO}{ }^{\circledast}$ Switches, 12 V is still available to operate the load.

Parallel Wiring

Any number of GO® Switches may be wired in parallel, with no current leakage and without drawing operating current. When conventional solid state switches are wired in parallel, there is about 100 microamps leakage through each switch. If ten switches were wired in parallel, the total leakage current would be 1000 microamps or one milliamp -sufficient current to indicate an "ON" condition to a programmable logic controller (PLC)

No Voltage Drop with $\mathbf{G 0}{ }^{\oplus}$ Switches

No Current Leakage with GO® Switches

Setting Up A 70 Series GO® ${ }^{\text {S }}$ witch For Optimum Performance

GO Switch 70 Series end sensing switches use three permanent magnets and a push-pull plunger to control a set of mechanical contacts. The center magnet simultaneously attracts the primary magnet and repels the bias magnet, pushing the connecting rod and common contact into the normally closed position, closing a contact circuit. When a ferrous or magnetic target enters the sensing area of the switch, it attracts the primary magnet, which pulls the connecting rod and common contact into the normally open position, closing the other contact circuit.

The sensing distance is the maximum distance between the switch and target when the switch first operates; the trip point. The differential, also known as deadband or hysteresis, is the distance that the target must move from the sensing area in order to allow the switch to reset.
The internal mechanism is shown here:

To apply the 70 Series GO Switch to obtain the least differential, the direction the target approaches the switch must be considered. Below are two possible orientations that illustrate the differences in target movement and the affects on switch differential.

The measurements shown are nominal and can vary as much as $.030-.050^{\prime \prime}$ depending on the material and size of target used in the application. As you can see, the best scenario for least differential is to orient the switch and target as shown in Orientation B. However, in this application, the possibility of getting debris between the switch and target must also be considered.
When trying to determine differential of an application, it is directly proportional to the distance the target will travel in the application. For example: a Linear valve stroke is 1 ". A switch is applied to indicate the closed position of the valve. Using Orientation A , the differential is 0.090 ". The 'deadband' linear valve stroke is 1 ". A switch is applied to indicate the closed position of the valve. Using Orientation A, the differential is 0.090 ". The "dea

Remember, there is no exact science to use when applying a GO Switch. However, once the switch is set, and the target travels to the same position every time (within . 002 "), the GO Switch will maintain calibration for life. Set it and forget it!

Installation Principle -

Round Switches

- 70 Series GO Switches are inherently shielded, and are unaffected by surrounding ferrous material, weld and RF interference.
- GO Switches sense ferrous materials such as mild steel, 400 series and $17 / 4$ stainless steel.
- Sensing and differential of switch may vary depending on target travel direction.
- Avoid contact between target and switch. Configure mounting of switch and/or target so that target passes within proximity range of sensing area. Sensing range will vary according to model number and size (mass) of target used.
- Target magnets, available through TopWorx, will increase the sensing range of the switch Reference sensing ranges in corresponding sections throug out the catalog.
- For optimum performance, provide sufficient mass of target and choose the appropriate GO Switch model to match the application requirements for operating frequency, type of load, etc.
- The greater mass of target the better for maximum contact pressure, especially in low current applications.
- For heavy or inductive loads, arc suppression devices, or interposing relays are recommended for contact longevity. Contact factory for specifics.
- Do not use excessive force on external threads when installing. (36 in/lbs. max)
- Configure mounting so bracket dissects switch as close to the middle of the length of body as possible (Fig. 1). This eliminates undue stress caused by heavy cables, connectors, etc.
- Two appropriately sized jam nuts are included with switch. Lock washers are recommended in high vibration applications.

For cylinder applications, see pg. 65

 for set up recommendations. length of switch

Pressure Sealing Methods

GO Switch recommends the use of our Parker ThredSeal ${ }^{\ominus}$ Washer Kits in lieu of other commercially available sealing hardware. Provided with the Parker for specific pressure ratings as well as the maximum torque values.

Models $73-76$ - $5 / 8$ " Diameter
Torque Jam Nuts to:

15 lbs-ft to achieve seal at 2,000 PS 25 lbs-ft to achieve seal at 5,000 PS Do not exceed 30 lbs-ft

Models 71 \& $72-3 / 88^{\prime \prime}$ Diameter Torque Jam Nuts to:
15 lbs-in to achieve seal at 2,000 PSI 30 lbs-in to achieve seal at 5,000 PSI Do not exceed 45 lbs -in

Model 77-3/4" Diameter
Model 77 - $3 / 4$ " Dia
oraue Jam Nuts to:
20 llss-ft to achieve seal at 2,000 PS 65 lbs-ft to achieve seal at 5,000 PSI Do not exceed 75 lbs-ft

Air and Hydraulic Cylinders

A ferrous cylinder cushion or piston will actuate the switch

To determine the correct thread length, measure the distance from the head cap surface to the cushion and add $1 / 2$ " for seal nut. 70 Series are rated 2,000 PSI operating pressure; 5,000 PSI operating and 10,000 PSI non-shock optional on models 73 through 77.

Thread seal nut onto switch. Screw switch into cylinder by hand until switch touches cushion. Back out $1 / 4$ to $1 / 2$ turn. Tighten seal nut.

- 70 Series GO® Switches areunaffected by surrounding ferrous steel.

Factors Affecting Contact Life

GO Switches are designed to provide optimum performance over a long period. Their premium grade components and inherently durable design keeps them working, trouble-free, year atter year. Some of the conditions that can decrease contact life are:

Contact Erosion

There are two types of contact erosion, mechanical and electrical. Electrical contact erosion is caused by heavy electrical loads. The contacts may overheat and become molten if there isn't sufficient off time to allow cooling between cycles. Mechanical erosion occurs as a result of friction between contacts cycling at high speeds with little or no electrical load. Mechanical wear can also occur due to operating a switch at a frequency higher than its design capability. The high operating speed of GO Switches make them ideal for almost any application. For those with unusually high-frequency switching demands, please consult factory.

Electrical wear caused by arcing, can be eliminated by utilizing high quality contact materials, such as the gold-flashed silver cadmium oxide used in GO Switches, and by operating the switches within the voltage parameters for which they are designed. The use of arc suppressors such as resistor-capacitor combinations or blowout coils can also serve to prevent arcing, a consideration which is particularly mportant in certain hazardous operating environments.

Contact Transfer

When switches are operated above rated voltage or at high speeds, contact material can transfer from one contact to the other. For this reason, it is important to observe the input voltage specifications supplied for each GO Switch.

Welding or Sticking

The GO Switch design virtually eliminates welding or sticking due to mechanical armature hang-ups. Excessive voltage and the resultant arcing, however, can cause overheating of the contacts and welding or sticking. By operating the GO Switch within its specified parameters, this problem can be eliminated.

NEC 500-4 Protection Techniques for Hazardous Locations

500-4(a) Explosionproof Apparatus
500-4(e) Intrisically Safe Systems
$500-4(\mathrm{~h})$ Hermetically Sealed
NEC 500-5 (a) Class I Groun Clascification
NEC 500-5(b) Class II Group Classifications
NEC 500-7 Class I Locations Definitions
500-7 Class I Locations Definition
$500-7$ (a) Class, I, Division 1.
500-7(b) Class I, Division 2
NEC 500-8 Class II Locations Definitions 500-8(a) Class II, Division 1
500-8(b) Class II, Division 2
NEC 500-9 Class III Locations Definitions
500-9(a) Class III, Division 1
500-9(b) Class III, Division 2

NEC 501-4 Wiring Methods

501-4(a) Class I, Division 1
NEC 501-5 Sealing and Drainage
501-5(a) Conduit Seals, Class I, Division 1
(Conduiit Seal Locations)
501-5(b) Conduit Seals, Class I, Division 2 (Conduiit Seal Locations)
$501-5(c)$ Class I, Divisions 1 and 2 (Seal Fitting Compliance) $501-5(\mathrm{~d})$ Cable Seals, Class I, Division 1
$501-5(e)$ Cable Seals, Class I, Division
Table 5.1 Conduit and Cable Seal Requirements for
Tabarardous Locations
NEC 501-6 Switches, Circuit Breakers, Motor Controllers and Fuses. 501-6(a) Class I, Division 1
501-6(b) Class 1, Bision 2
01-6(1) Type Required
501-6(1)(a) Hermetic seal
$501-6(1)(b)$ Factory seal
$501-6(1)$ (d) Solid state switch
mers and Resistors (Solenoids)
NEC 501-7 Control Transformers and Resistor (Solenoids) (Disconnect Plugs)
NEC 501-16 Grounding, Class I, Divisions 1 \& 2

NEC 502-4 Wiring Methods

502-4(a) Class II, Division 1
502-4(b) Class II, Division 2
NEC 502-5 Sealing, Class II, Divisions 1 \&
NEC 502-6 Switches, Circuit Breakers, Motor Controllers and Fuses 502-6(a) Class II, Division 1

502-6(a)(1) Type required
$502-6(a)(2)$ Isolating Switch
502-6-6(a)(3) Metal dusts 502-6(b) Class II, Division 2
NEC 502-7 Control Transformers and Resistors (Solenoids 502-7(a) Class II, Division 1
502-7(b) Class II, Division 2

IEC 504 Intrinsically Safe System

504-2 Definitions
Associated apparatus
Control drawing
Intrinsically safe apparatus
4 Equipment Approval
504-10 Equinment Instalalatio
504-10(a) Control drawing
504-10(b) Location
504-20 Wiring Methods

$\mathbf{0 5}$ Class \mathbf{I}, Zone $\mathbf{0 , 1} 1$ and 2 Locations

505-3 Location and General Requirements 505-3(a) Classification of location
505-4 Protection Techniques
505-4(a) Flameproof "d"
505-4(c) Intrinsically safe
505-4(f) Increased safety "e"
505-4(a) Encapsulation "m"
505-5 Reference Standards
505-7 Grouning and Classifica
505-7(a) Group IIC
505-7(b) Group IIB
505-7(c) Group IIA
505-9 Zone Classification
505-9(a) Class I, Zone 0
505-9(b) Class I, Zone 1
505-9(c) Class I, Zone 2
505-10 Listing, Marking and Documentation
505-10(a) Listing
505-10(c) Documentation
505-15 Wiring Methods
505-15(a) Zone 0
505-15(b) Zone 1
505-20 Equipment
505-15(a) Zone 0
505-15(b) Zone 1
505-15(c) Zone 2

Definitions as referenced by NEC Article 100

Ampacity

The current, in amperes, that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.

Approved

Acceptable to the authority having jurisdiction.

Bonding

The permanent joining of metallic parts to form an electrically Conductive path that will ensure electrical continuity and the capacity to conduct safely any current likely to be imposed.

Bonding jumper

A reliable conductor to ensure the required electrical conductivity between metal parts required to be electrically connected

Device

unit of an electrical system that is intended to carry but not utilize electric energy.

Disconnecting

A device, or group of devices, or other means by which the conductors of a circuit can be disconnected from their source of supply.

Dustproo

Constructed or protected so that dust will not interfere with its successtul operation.

Dusttight

Constructed so that dust will not enter the enclosing case under specified test conditions.

Enclosure

The case or housing of apparatus. . .to prevent personnel from accidentally contacting energized parts or to protect the equipment from physical damage.

Explosionproof apparatus

Apparatus enclosed in a case that is capable of withstanding an explosion of a specified gas or vapor that may occur within it and of preventing the ignition of a specified gas or vapor surrounding the enclosure by sparks, flashes, or explosions of gas or vapor within, and that operates at such an external temperature that a surrounding flammable atmosphere will not be ignited thereby.

Ground

A conducting connection, whether intentional or accidental, between an electrical circuit or equipment and the earth, or to some conducting body that serves in place of the eath

Grounded

Intentionally connected to earth through a ground connection or connections of sufficiently low impedance and having sufficient
current carrying capacity to prevent the buildup of voltages that may result in undue hazards to connected equipment or to persons.

Labeled

Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization cerned with product evaluation that mainaind poriodic conof production of labeled equinment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.

Listed
Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisciction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that either the equipment, material, or services meets identified standards or has been tested and found suitable for a specified purpose.

Live parts

Electric conductors, buses, terminals, or components that are uninsulated or exposed and a shock hazard exists.

Nonincendive circuit

A circuit, other than field wiring, in which any arc or thermal effect produced under intended operating conditions of the equipment, is not capable, under specified test conditions, or igniting the
flammable gas, vapor, or dust-air mixture. See Section 500-4(f) for details regarding this protection method allowable in Class I and III, Division 2 classified areas.

Qualified person

One familiar with the construction and operation of the equipment and the hazards involved.

Rainproof

Constructed, protected, or treated so as to prevent rain from interfering with the successful operation of the apparatus under specified test conditions.

Raintight

Constructed or protected so that exposure to a beating rainwill not result in the entrance of water under specified test conditions.

Watertight

Constructed so that moisture will not enter the enclosure under specified test conditions.

Weatherproof

Constructed or protected so that exposure to the weather will not interfere with successful operation.

Applications

AUTOMOTIVE
Chemical washdown area
Conveyors
Cylinder end-of-stroke
indication
Eye wash stations

Eye wash stations
Marmac position sensing Paint incineration damper indication
Paint mixing valves
Paint spray areas
Part present indication Pneumatic and hydraulic clamping and welding fixtures
Positioning and indexing Powerhouse (see Power Generation)
Safety showers
Speed control on conveyors

CEMENT PLANTS

Bagging
Chutes
Crushers
Hopper doors
Kilns
Machinery
acknery
Packaging
CHEMICAL PROCESSING Emergency showers
Eye wash stations
Filters
Hose Couplings
Transfer panels
Valve position indication

CONSTRUCTION

Concrete block mfg.
Concrete ready mix
trucks (counting revolu-
tions of drum)
Cranes
ELEVATORS/ESCALATORS Leveling switch in mining elevators

EQUIPMENT

On all equ the value of the switch is judged by its performance and long life
FLUID POWER
Cylinders
Valves

FOOD PROCESSING Canning/bottling equipment Conveyors
Cylinder indication
Freezers
Labelers
Material handling
Mixers
Packaging equipment
Scales
Showers and eyewash
Schowers
stations
Valve position indication
FOUNDRIES
Conveyors
Crane
Dampers
Ladle positioning
Mold positi
Shakers
Showers and eyewash
stations
GLASS
Conveyors
Limits in all high heat areas
Mixers
LUMBER AND WOOD
PRODUCTS
Conveyors
Eyewash stations
Sawdust bins
Saws
Ventilation equipment
MACHINERY
Car wash
Commercial laundry

Compacting
 Engraving
 Freezing

Gluing
Heavy Equipment
(Komatsu, John Deere,
Hyundia, etc.)
Lubricators
Mixing
Printing
Other machinery dealing with abrasive, explosive, corrosive or otherwise "hard to handle" environments
Rock crushing
MATERIAL HANDLING
Baggers/Balers
Bulk loading/unloading
equipment
Conveyors
Crating equipment
Labelers
Lifts
Packaging machines

MILITARY/MARINE

Ballast transfer pumps
Davits
Elevators
Elevator speed control
Hatch interlock
Safety interlocks
Shipboard cranes
Valve position indication

MINING

Any limit application Conveyors
Cylinders
Dump bed up indication
Longwall equipment
Shower and eyewash
stations
Track signal

GAS TRANSMISSION/
 \section*{DISTRIBUTION}

Door security
Valve position indication

NUCLEAR POWER PLANTS
Fuel transfer systems Valve position indication

OFF ROAD EQUIPMENT

Boom alignment
Cranes
Cylinders
Dump truck bed indication
Ore/coal pile reclaimers
OIL/GAS EXPLORATION
Off-shore sites
Sub-sea applications Valve position indication

PETROLEUM REFINING
Interlocks
Motor phase monitoring
Shower
Valve position indication
POWER GENERATION
Air preheaters Air preheater blowers
Ash bins
Ash handling valves
Bag houses
Barge unloaders
Blow down valves Boiler feed pump recircula
tion valve
Boiler oil injectors
Bottom ash valves
Burner valves
Coal car dumpers
Coal feeders
Coal handling apparatus
Coal pulverizing swing
valves
Coal samplers
Coal transport conveyors
Conveyors
Dampers
Damper valves
Economizers
Feedwater heater level detection
Fly ash valves
Hopper gates

STEEL MILLS	WASTE WATER TREATMENT
Bullwheels	Agitators
Cold rolling units	Clarifiers
Conveyors	Clutches
Cranes	Shower and eyewash
Dampers	stations
Draw benches	Sluice gates
Fans	Valves
Hot mill applications	
Shower and eyewash	
stations	
Track monitors	
Valve position indication	
TIRE AND RUBBER	
Any machinery handling	
carbon black	
Conveyors	
Curing presses	
Cylinder end-of-stroke	
indication	
Shower and eyewash	
stations	
Tire mold closure inter	
locks	
Tire scrivers	
TOOL \& DIE	
Plastic injection molding	
Aluminum die-casting	Rubber molding
High temperature	
applications	
TRANSPORTATION	
EQUIPMENT	
Airport fuel transfer	
equipment	Davits
Hangar doors	
Hatch interlocks	K-Loaders
Passenger jetways	
Scissor lifts	
Shipboard cranes	Valve position indication
Vehicle interlocks	

SOOT BLOWER POSITION INDICATION

Wherever power is generated, whether it is at a power generation station or a pulp and paper facility, soot blowers are used to eliminate slag buildup from the inside wall of a boiler. The lance of the soot blower penetrates the side of the boiler wall and extends inside. As it enters the boiler, the lance rotates in a clockwise motion spraying high pressure steam from the end of the lance back toward the boiler wall. This high pressure spray removes the slag in a circular pattern that enlarges as the lance extends further into the boiler. After the lance is fully extended, it retracts and rotates counter-clockwise to its original inactive state until a predetermined time when the process starts again. Depending on the size of the boiler, there can be as many as 60 soot blowers to service one boiler!

As you might imagine, the area in which the soot blowers operate is a demanding environment. High temperature and physical abuse make mechanical limit switches a constant maintenance headache. If a soot blower is out of service, the boiler wall is not being cleaned and as a result, power is not being generated efficiently. Translation: downtime, maintenance costs and lost revenue.

Fortunately, GO Switch has the solution. Each soot blower can be retrofitted using two Double Pole, Double Throw 80 Series GO Switches and one (1) AMS4 target magnet. As the soot blower lance extends and retracts into the boiler, the target magnet travels to the sensing area of each GO Switch, providing maintenance-free, fit and forget position indication.

The GO Switch is wired like a mechanical switch so existing wiring can be used for easy installation. Since the GO Switch does not depend on lever arms or internal moving parts, maintenance is immediately eliminated. This has been field tested and proven in thousands of applications already

AUTOMOTIVE SKID CONVEYOR INDICATION

Automotive manufacturers need reliable position indication of body skids along the skid conveyor system. The critical areas are at the entrance, exit, and even inside of the paint-drying ovens where temperatures can reach close to $400^{\circ} \mathrm{F}$. Mechanical limit switches and inductive proximity switches cannot withstand the heat or the physical abuse of this application. Fortunately...

GO Switch has the answer

We recommend our stainless steel high temperature 10 Series GO Switch with extended sensing, and a $400^{\circ} \mathrm{F}$ continuous temperature rating

The GO Switch will provide reliable maintenance-free position indication in this tough application.
Contact the paint shop supervisor, electrical engineers, and/or maintenance people responsible for the paint booth. They will be glad you called!

GRAIN BIN OPEN/CLOSED GATE POSITION

Grain elevators need an explosion-proof sensing device to signal when the slide gate of a grain bin is fully closed. This permits grain to be fed into the bin without waste.

The switch not only had to be explosion-proof, but also had to withstand dirty and dusty conditions.
A GO Switch was mounted on a stainless steel bracket, $1 / 4$ " below the moving rack drive. This allows $1 / 8^{\prime \prime}$ of play in the drive movement, while providing accurate sensing of the position of the bin gate.

The dependable GO Switch costs less than other explosion-proof limit switches.

bar screen trash rakes for water treatment

Bar screens are typically used in the intake channels of water treatment plants to remove solid debris from the water to prevent damage of subsequent equipment. When debris has accumulated on the screen, cleaning is required. It is done with a trash rake that is usually mounted in front of the screen on a support frame. Some of these trash rakes are manually operated and most are motor propelled so an operator only has to push a button to activate the rake. Some are activated by a timer. The rake goes through a cycle descending in front of the screen to the bottom moving towards the screen and then moving upward transporting the accumulated debris to a discharge chute where a container or a conveyor takes it away.

The motor operated trash rakes usually have two limit switches on them mounted to the support frame well above the water level. The end-of-travel limit switch defines the exact position at which the assembly will stop at the end of the cycle. The overload protection switch is activated when the rake comes in contact with an obstruction in the screen too large for it to remove.

Stainless steel 10 series or 80 series are the best limit switches for these applications. The harsh and moist environments in water treatment plants are too much for mechanical or solid state switches. Often the switches must be explosion proof and magnets must be used as targets because of the variation in the traveling rake position.

Water treatment plants are in a number of facilities including:
 - Plastics manufacturing plant -Food processing plants

-Sewage treatment plants -Fish conservation projects -Flood control pumping stations

REFUSE TRUCKS

Refuse trucks have as few as three switches and as many as ten switches per truck. The most common competitive switches used are mechanical lever-arm and push-button limit switches. Some trucks incorporate electronic proximity sensors.
Limit switch/sensor failures are prevalent in the refuse collection business. These switch/sensor failures are attributed to mechanical wear and tear, moisture-ingression, corrosion and temperature extremes.
Vehicles out of service for any period of time cause lost revenue.
GO Leverless Limit Switches will prevent these failures and downtime while reducing maintenance costs.
Visit the refuse collection companies in your area. They will be glad you called!
LS1 = Normally open: held closed when side door is closed and latched.
LS2 $=(7$ \& 8 normally closed) (1 \& 2 normally open): switches at end of packer stroke.
LS3 $=$ Normally closed: opens when tailgate is latched.
LS4 = Normally closed: opens when tailgate is latched.
LS5 = Normally closed: opens when packer is fully retracted.
LS6 = Normally open: ($1 \& 2$ normally open) (5 \& 6 normally open): closes when arms are above cab.
LS7 $=$ Normally closed: opens when top door opens.

SAFETY SHOWERS AND EYEWASH STATIONS

In an emergency first-aid is crucial and according to the OSHA Plant Safety regulations; Subpart G-Occupational Health and Environmental Control; Section 1910.94, Paragraph (d) (9) (vii):
(vii) Near each tank containing a liquid which may burn, irritate, or otherwise be harmful to the skin if splashed upon the worker's body, there shall be a supply of clean cold water. The water pipe (carrying a pressure not exceeding 25 pounds) shall be provided with a quick opening valve and at least 48 inches of hose not smaller than three-fourths inch, so that no time may be lost in washing off liquids from the skin or clothing. Alternatively, deluge showers and eye flushes shall be provided in cases where harmful chemicals may be splashed on the body.

Deluge Showers and eye flushes are plentiful in chemical processing facilities How are the proper personnel notified should an emergency occur? Flow switches are used, but have corrosion and freezing problems.

GO Switch has the answer.

The GO Switch VIP for deluge showers and eye flushes can be mounted on any new or existing unit. Using the GO DPDT 80 Series switch allows for flexibility in signalling the proper personnel. For example, when the shower or eye flush valve is opened the GO Switch can signal the central control room and first-aid personnel simultaneously, or signal the control room and sound an alarm. When personal injury occurs time is of the essence.

Reference Material

Type 1	General Purpose	indoor	accidential contact (cage or skeleton) will not rust
Type 2	Drip-proof	indoor	limited amounts of falling water and dirt (not dust-tight) will not rust
Type 3	Dust-tight, rain-tight	outdoor	windblown dust, rain, sleet, and undamaged by external ice formation
Type 3R	Dust-tight, rain-tight	outdoor	same as type 3 above, plus diverts water from live parts, provision for drainage, will not rust
Type 3S	Dust-tight, rain-tight	outdoor	same as type 3 above, operation of external mechanism when ice laden, will not rust
Type 4	Water-tight/dust-tight	indoor/ outdoor	windblown dust and rain, splashing water, and hose directed water, undamanged by ice formation, will not rust
Type 5	Dust-tight	indoor	dust and falling direct, will not rust
Type 6	Water-tight, dust-tight	indoor/ outdoor	temporary entry of water during limited submersion (6 ft . for 30 min), undamaged by formation of ice, will not rust
Type 6P	Water-tight/dust-tight	indoor/ outdoor	same as type 6 above plus prolonged submersion at 6 psig, will not rust
Type 7	Explosion proof CI I, Gps A, B, C, D	indoor	Hazardous locations: protection against corrosive effects of liquids and gases
Type 8	Explosion proof CI I, Gps A, B, C, D	indoor/ outdoor	Hazardous locations: protection against corrosive effects of liquids and gases; contacts or connections immersed in oil
Type 9	Explosion proof Cl II, Gps E or G	indoor	Hazardous locations: dust-tight, hazardous dust
Type 10	Hazardous Locations	indoor	(MSHA) Mine Safety and Health Adm. per 30 C.F.R., Part 18
Type 11	Oil-tight/Corrosion	indoor	protection from corrosive effects of gases and liquid dripping, seepage and external condensation of corrosives, oil immersion
Type 12	0il-tight/Dust-tight	indoor	fibers, lint, dust and light splashing, seeage, and dripping condensation of non-corrosive liquids
Type 12K	Oil-tigh/Dust-tigh	indoor	same as type 12 above, enclosure has knockouts
Type 13	Oil-tight/Dust-tight	indoor	dust, spraying of water, oil and corrosive coolant, oil resistant gaskets

Approval Agencies	This group defines the options or approvals which may be required for a particular application. Safety requirements, the demands of the machinery on which the switch will be used, or the type of environment will all play a role in determining the type of approval needed.
Underwriters Laboratories (UL)	
DEMCO (Subsidiary of UL)	

UL Hazardous Locations

Class I, Division $1 \& 2$ Protection Methods

Area	Protection
Division 1	Explosion proof Intrinsically safe (2 fault)
	Purged/pressurized (Type X or Y)
Division 2	Non-incendive
	Non-sparking device
	Purged/pressurized (Type Z)
	Hermetically sealed
	Any Class I, Div. 1 method
	Any Class I, Zone 1 or 2 method

$$
\begin{aligned}
& \begin{array}{l}
\text { Appricable Certification Documents } \\
\text { U.S. }
\end{array} \\
& \begin{array}{ll}
\text { UL } 1203 & \text { Canada } \\
\text { CSA-30 }
\end{array} \\
& \text { UL } 913 \text { CSA-13 } \\
& \text { UL } 1604 \text { CSA-213 } \\
& \text { UL } 1604 \text { CSA-21 } \\
& \text { NFPA 496NFPA } 496 \\
& \text { ULPA } 1604 \quad \text { CSA } 213
\end{aligned}
$$

Class I, Zone $0,1 \& 2$ Protection Methods

UL Hazardous Locations

Class II, Division 1 \& 2 Protection Methods

Area		Applicable Certification Documents	
	Protection	U.S.	Canada
Division 1	Dust-ignition proof	UL 1203	CSA-25 or CSA-E-1241-1-1
	Intrinsically safe	UL 913	CSA-157
	Pressurized	NFPA 496	NFPA 496
Division 2	Dust-tight	UL 1604	CSA-157 or CSA-E-1241-1-1
	Non-incendive	UL 1604	---
	Non-sparking	UL 1604	---
	Pressurized	NFPA 496	NFPA 496
	Any Class II, Div. 1 method	---	---

Hazardous Locations Markings

Class I, II \& III, Division 1 \& 2 (U.S. \& Canada) -- This marking would include
Class(ess), Division(s), Gas/Dust Group(s), Temperature Code. Example: Class I, Division 1, Groups C \& D, T4A.
Class I, Zone 0, \& \& (U.S. \& Canada) -- This marking would include:
Method A: For Zone Listings based on UL 2279 or the CSA-E79 Series Class, Zone(s), Ex, Protection Method(s), Gas Group, Temporary Code. Example: Class I, Zone 1, Ex de IIB T4.

Method B: For Zone Listings based on UL or CSA Division Certification Documents Class, Zone(s), Gas Group, Temperature Code. Example: Class I, Zone 1, Group IIB T4.

Note: For U.S. Zone Listings based on UL 2279, Article 505 of the 1999 NEC requires that the "Ex" element of the marking string shal read "AEx."

Note: For Canadian Zone Listings based on the CSA-E79 Series, the "Class" and "Zone" elements of the marking string are optional
Zone $0,1 \& 2$ (IEC only) -- This marking would include:
Ex, Protection Method(s), Gas Group, Temperature Code. Example: Ex de IIB T4
Zone $0,1 \& 2$ (Europe only) -- This marking would include:
EEX, Protection Method(s), Gas Group, Temperature Code. Example: EEX de IIB T4

UL Hazardous Locations

Class III, Division 1 \& 2 Protection Methods

Area	Protection Dust-tight Invision 1
Intrinsically safe	

Applicable	
Certification Documents	
U.S.	Canada
UL 1604	CSA-157
UL 913	CSA-157
UL 1604	CSA-157
UL 913	CSA-157

UL's Hazardous Locations Standards
ANSI/UL 674
ANSI/UL 698 ANSI/UL 781 ANSI/UL 783 ANS/U 823 ANS/LI 844 ANSI/LI 877 ANSIUL 877 ANSIUL 89 ANSLU 013

ANSI/UL 1002 ANSIUL 1010 ANSIUL 1067 ANSIUL 1203 ANSILL 1207 ANSIUL 12
UL 10
UL 22
UL 2225
ANS//UL 2279

Electric motors and generators for use in Division 1 hazardous (classified) locations. Industrial control equipment for use in hazardous (classified) locations. Portable electric lighting units for use in hazardous (classified) locations. Flectric flashlights and lanterns for use in hazardous (classified) locations. Electric heaters for use in hazardous (classified) locations.
Electric lighting fixtures for use in hazardous (classified) locations.
Circuit breakers and circuit-breaker enclosures for use in hazardous (classified) locations.
Outtet boxes and fittings for use in hazardous (classified) locations.
Switches for use in hazardous (classified) locations.
Intrinsically safe apparatus and associated apparatus for use in Class I , I a and III, Division I, hazardous (classified) locations.
Electrically operated valves for use in hazardous (classified) locations.
Receptacle-plug combinations for use in hazardous (classified) locations.
Flectrically conductive equipment and materials for use in flammable anesthetizing locations
Explosion-proof and dust-ignition-proof electrical equipment for use in hazardous (classified) Iocations. Sewage pumps for use in hazardous (classified) locations.
Electrical equipment for use in Class I and II, Division 2, and Class III hazardous (classified) locations. Solvent distillation units.
Metal-clad cables and cable-sealing fititings for use in hazardous (classified) locations. Electrical equipment for use in Class I, Zone 0,1 and 2 hazardous (classified) locations.

Ambient Temperature

The temperature for a medium, such as gas or liquid, surrounding an object.

Analog Signa

A signal in which the data is represented or transmitted in continuously varying quantities, as opposed to a digital signal

ANSI
Abbreviation for American National Standards Institute.
AWG
Abbreviation for American Wire Gauge; based on circular mil system.
AWM
Appliance Wiring Material
Axial Motion
A motion of the target along the reference axis.

BASEEFA
Abbreviation for British Approvals Service for Electrical Equipment in Flammable Atmospheres,

CEE
Abbreviation for the International Commission on Rules for the approval of Electrical Equipment.

CE Mark

A trademark that allows a manufacturer trade privileges with the European Union. The CE Mark, by responsibility of the manufacturer, insures that certain directives have been met through testing and documentation

CENELEC

European Committee for Electrotechnical Standardization.
C-UL

Contact Bounce

A condition that can occur with switching circuits in which the movable contacts close against the stationary contacts with enough energy to "bounce" and reopen the contacts. This may occur several times, very rapidly, during a contact closure.

Contact Pressure

The amount of force holding the movable and stationary contacts together
CSA
Abbreviation for Canadian Standards Association.
DEMCO
A subsidiary of Underwriter's Laboratories.
Differential (Hysteresis) (Reset)
The distance which a target must move from the sensing point in order to allow the switch to reset

Differential Travel

A distance between the operating and release points.

Digital Signal

A signal in which the data is transmitted or represented by a series of discrete pulses or steps of constant amplitude
Dry Circuit
A circuit in which the open circuit voltage is 0.03 V or less and the current is 200 mA or less. At such low levels, the current is not able to break through the film of oxides, sulfides or other films which may build up on the contact surfaces.

Environmental Sea

A seal created by gaskets, seals, potting or other means, designed to keep out contamination which might reduce performance. An environmenta seal is sometimes referred to as a "factory seal."

Explosion Proof

The property of being able to contain an explosion within the sensor or housing

Frequency

The number of cycles completed by an alternating current in one second. The newest term Hertz abbreviated "Hz" is equivalent to "cycles per second,"

Hermetic seal
A permanent seal created by fusion, soldering, welding, brazing or other means, to prevent the transmission of gases. A hermetic seal is also referred to as "helium tight," "leak tight," or "vacuum tight." For most applications, a hermetic seal is one where the leakage rate is less than $1 \times$ 10 cubic centimeters per second of helium, at a differential of one atmosphere.

Hi-Pot

A device used to place a high voltage across an insulator, to test its insulating properties. The typical Hi-Potential Breakdown Test specified by CSA and UL requires that the voltage be twice the rated voltage, plus 1000 volts, plus 20% of that total. For example, a 600 v switch would be tested at $[(600 \times 2)+1000] \times 1.2=2640$ volts. This voltage is placed across the insulator for 1 second, If the insulator doesn't break down, it is considered acceptable.

Hysteresis (Differential) (Reset)
The distance which a target must move from the sensing point in order to allow the switch to reset

IEC
Abbreviation for the international Electrical and Electronics Engineers.

(IS) Intrinsically Safe

Intrinsic safety may be attained through integral circuitry or an appropriately sized barrier, both of which are current imiting devices. The on-board circuitry, or barrier, is designed for the area classification which the monitoring device is to be used. The basis of intrinsic safety is to limit the amount of current through a device, so that if there is exposure to the surrounding atmosphere there is not sufficient heat generated to ignite that atmosphere

ISO
Abhreviation for the International Standards Organization

Latching Condition

A condition where the switch will not reset to its unoperated mode .It must be operated, then reset, in two separate operations.
Lateral Motion
A motion of the target perpendicular to the reference axis.
Leakage Current
Minute amounts of current which flow through a switch even in the unoperated state. Leakage current occurs with electronic switches since they require an external power supply. $G 0^{\circledR}$ Switches do not require a power supply and, therefore have no leakage current.

MSHA

Abbreviation for Mine Safety Heath Administration
NEMA
Abbreviation for the National Electrical Manufacturers Association
NEC
National Electric Code

Non-incendive

Non-incendive equipment contain components that do not allow arcs or sparks to ignite concentrations of flammable gases. One method of Non-incendive equipment contain components that do
producing a non-incendive switch is by sealing off the contact chamber with a hermetic seal so that a flammable gas cannot enter into the arcing / sparking area of the switch.

Normally Closed Circuit

Circuit which passes current when the GO Switch is not actuated. Symbolized by N/C.
Normally Open Circuit
Circuit which passes current when the GO Switch is actuated. Symbolized by N / O.

perating Distance

A distance at which the target under its axial or lateral approaching causes the switch to operate. An axial operating distance is a distance between an operating point and the sensing face; a lateral operating distance is a distance between an operating point and the reference axis.

(PPM) Pulses Per Minute

Refers to applications, particularly in motion control circuits on rotary applications, where several operations of a switch take place with each evolution of the actuator device. If the actuator turns at "X" revolutions per minute and there are "Y" operations per revolution, the pulses per minute rate would be "X" x "Y" PPM.

PSI
Pounds per square inch. A unit of measure for pressure on a given sufface.

Polywiny chloride.

Proximity Switch

A position switch which is operated without mechanical contact with a moving target.

Rated Temperature

Maximum temperature at which an electric component can operate for extended periods without breaking down due to heat

Rated Voltage

Maximum voltage at which an electric component can operate for extended periods without undue degradation or safety hazard.

Reference Axis

An axis perpendicular to the sensing face and passing through its center.
Release Point
A position of the target at its axial or lateral moving away from the switch when it returns to non-operating state.

Repeatability

Ability to perform the same task operating parameters, consistently, time after time

Reset (Differential) (Hysteresis)
The distance which a target must move from the sensing point in order to allow the switch to reset.
Response Time
The amount of time required for the switch to move from N/C position to N/O position, or vice versa.

Abbreviation for Room Temperature Vulcanizing.
SAA
Abbreviation for Standards Association of Australia
SAE
Abbreviation for Society of Automotive Engineers.
Same Polarity Only
On DMDB switches the like terminals must be wired with the same voltage polarity.

Sensing Are
That location marked on a GO® Switch that is most sensitive to a ferrous or magnetic target
Sensing Distance Range
Maximum gap between switch and target when the switch first operates; the trip point.
Sensing Face
A surface of the switch through which the magnetic field interact with a moving target and causes the switch operate
so Cable
A cable designed for industrial use that has the PVC insulated lead wires protected by a rubber (usually neoprene) jacket.

Standard Targe

A specified object used for making comparative measurements of the operating and differential distances.

TEW
Thermoplastic Equipment Wire.
Temperature Rating
Maximum and minimum temperature at which an insulating material can be used in continuous operation without loss of basic properties.
UL
Abbreviation for Underwriter's Laboratories
Voltage Drop
The amount of voltage across a pair of closed contacts. In GO Switches, this voltage drop is extremely low, compared to solid state switches.
Voltage Rating
The highest voltage that may be continuously applied to an electrical device in conformance with standards or specifications

Conversion Factors

PSI $\times 27.71=$ in. $\mathrm{H}_{2} \mathrm{O}$
PSI $\times 2.036=\mathrm{in} . \mathrm{Hg}$
PSI $\times 703.1=\mathrm{mm} \mathrm{H} \mathbf{O}$
PSI $\times 51.75=\mathrm{mm}$
PSI $\times 51.75=\mathrm{mm}$ Hg
PSI $.0703=\mathrm{kg} / \mathrm{cm}^{2}$
PSI x. $0689=$ bar
PSI $\times 68.95=$ mbar
PSI x $6895=\mathrm{Pa}$
PSI $\times 6.895=\mathrm{kPa}$
Note: conversion factors are rounded.

